Answer:
The Correct Answer is Heat of Combustion
Explanation:
Answer:
The fringes are 4.7*10^-7 m apart, such that they are adjacent.
Explanation:
Using the formula for adjacent fringes given a single slit:
Δ
Δ
Δ
Hope this helps!
Answer:
-3m+7m = 4m
Explanation:
As he walks south, he is going down 3m (-3m). Then he walks up 7m (+7m).
You subtract the final position from the initial position to get displacement.
7m - 3m = 4m
Answer:
823.46 kgm/s
Explanation:
At 9 m above the water before he jumps, Henri LaMothe has a potential energy change, mgh which equals his kinetic energy 1/2mv² just as he reaches the surface of the water.
So, mgh = 1/2mv²
From here, his velocity just as he reaches the surface of the water is
v = √2gh
h = 9 m and g = 9.8 m/s²
v = √(2 × 9 × 9.8) m/s
v = √176.4 m/s
v₁ = 13.28 m/s
So his velocity just as he reaches the surface of the water is 13.28 m/s.
Now he dives into 32 cm = 0.32 m of water and stops so his final velocity v₂ = 0.
So, if we take the upward direction as positive, his initial momentum at the surface of the water is p₁ = -mv₁. His final momentum is p₂ = mv₂.
His momentum change or impulse, J = p₂ - p₁ = mv₂ - (-mv₁) = mv₂ + mv₁. Since m = Henri LaMothe's mass = 62 kg,
J = (62 × 0 + 62 × 13.28) kgm/s = 0 + 823.46 kgm/s = 823.46 kgm/s
So the magnitude of the impulse J of the water on him is 823.46 kgm/s
Answer:
speed and velocity, c would be my guess