Answer:
1.04 s
Explanation:
The computation is shown below:
As we know that
t = t' × 1 ÷ (√(1 - (v/c)^2)
here
v = 0.5c
t = 1.20 -s
So,
1.20 = t' × 1 ÷ (√(1 - (0.5/c)^2)
1.20 = t' × 1 ÷ (√(1 - (0.5)^2)
1.20 = t' ÷ √0.75
1.20 = t' ÷ 0.866
t' = 0.866 × 1.20
= 1.04 s
The above formula should be applied
(a) No, because the mechanical energy is not conserved
Explanation:
The work-energy theorem states that the work done by the engine on the airplane is equal to the gain in kinetic energy of the plane:
(1)
However, this theorem is only valid if there are no non-conservative forces acting on the plane. However, in this case there is air resistance acting on the plane: this means that the work-energy theorem is no longer valid, because the mechanical energy is not conserved.
Therefore, eq. (1) can be rewritten as

which means that the work done by the engine (W) is used partially to increase the kinetic energy of the airplane (
) and part is lost because of the air resistance (
).
(b) 77.8 m/s
First of all, we need to calculate the net force acting on the plane, which is equal to the difference between the thrust force and the air resistance:

Now we can calculate the acceleration of the plane, by using Newton's second law:

where m is the mass of the plane.
Finally, we can calculate the final speed of the plane by using the equation:

where
is the final velocity
is the initial velocity
is the acceleration
is the distance travelled
Solving for v, we find

6050 J is the kinetic energy at D
<u>Explanation:</u>
In physics, the object's kinetic energy (K.E) defined as the energy it possesses during movement. It can be defined as the required work to accelerate a certain body weight in order to rest at a certain speed. When the body receives this energy as it speeds up (accelerates), it retains this energy unless speed varies. The equation is given as,

Where,
m - mass of an object
v - velocity of the object
Here,
Given data:
m = 100 kg
v = 11 m/s
By substituting the given values in the above equation, we get

Answer: D. it has been demonstrated to be without exception under certain stated conditions.
Explanation:
A <u>Law</u> is an affirmation (something established) based on repeated long-term observation of a phenomenon that has been studied and verified.
That is: A law is present in all known theories and therefore is considered universal. In addition, a law can not be refuted, nor changed, because its precepts have been proven through various studies.
<u>Unlike theory</u>, which is the set of rules and principles that describe and explain a particular phenomenon and <u>is subject to changes as new evidence emerges that gives meaning to it. </u>
Then, based on what is explained above, the law of universal gravitation is a statement that exists because it was rigorously tested and verified, therefore it can not be refuted.
Answer:
the angle of incidence θ is 45.56 º
Explanation:
Given data
strikes the mirror before wall x = 30.7 cm
reflected ray strikes the wall y = 30.1 cm
to find out
the angle of incidence θ
solution
let us consider ray is strike at angle θ so after strike on surface ray strike to wall at angle 90 - θ
we will apply here right angle triangle rule that is
tan( 90 - θ) = y /x
tan( 90 - θ) = 30.1 / 30.7
90 - θ = tan^-1 (30.1/30.7)
90 - θ = 44.4345
θ = 45.56 º
the angle of incidence θ is 45.56 º