Answer : The final equilibrium temperature of the water and iron is, 537.12 K
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of iron = 560 J/(kg.K)
= specific heat of water = 4186 J/(kg.K)
= mass of iron = 825 g
= mass of water = 40 g
= final temperature of water and iron = ?
= initial temperature of iron = 
= initial temperature of water = 
Now put all the given values in the above formula, we get:


Therefore, the final equilibrium temperature of the water and iron is, 537.12 K
Explanation:
NaCl, HCl, NaOH, KCl, CH3COOH
Answer:
Explanation:
Since the transferred heat is equal to the change in the internal energy, the heat is proportional to the mass of the substance and the temperature change. The transferred heat also depends on the substance so that, for example, the heat necessary to raise the temperature is less for alcohol than for water. Hope that helps!:)
Answer:
The answer to your question is:
Explanation:
Reaction
SnCl₂ + 2KMnO₄ ⇒ 2 KCl + Sn(MnO₄)₂
1 ---- Sn ---- 1
2 ---- K ----- 2
2 ---- Mn ---- 2
8 ---- O ---- 8
2 ---- Cl ---- 2
Quantum numbers are used to describe the location of electrons in atoms.
Principal quantum number(n) tells which energy shell the electrons reside in.
The first energy shell n = 1, second energy shell n = 2 and it goes on.
Azimuthal quantum number (l) states which orbital the electron is most likely to reside in. the number of orbitals in an energy shell depends on the principal quantum number. number of orbitals are from 0 to n-1
If l = 0, s orbital
l = 1 , p orbital
l = 2, d orbital
in 2nd energy shell the number of orbitals are 0,1 etc.
5s-
Principal quantum number n = 5
Azimuthal quantum number l = 0
6p
Principal quantum number n = 6
Azimuthal quantum number l = 1
4d
Principal quantum number n = 4
Azimuthal quantum number l = 2