Since the total amount of valence electrons is 3, it is in group 13 in the periodic table..therefore, it is specified as Boron.✅
The answer is True . The precision of a measuring is based on the fitness of its scale subdivisions
To know the acidity of a
solution, we calculate the pH value. The formula for pH is given as:
<span>pH = - log [H+] where H+ must be in Molar</span>
We are given that H+ = 3.25 × 10-2 M
Therefore the pH is:
pH = - log [3.25 × 10-2]
pH = 1.488
Since pH is way below 7, therefore the solution
is acidic.
To find for the OH- concentration, we must
remember that the product of H+ and OH- is equivalent to 10^-14. Therefore,
[H+]*[OH-] = 10^-14 <span>
</span>[OH-] = 10^-14 / [H+]
[OH-] = 10^-14 / 3.25 × 10-2
[OH-] = 3.08 × 10-13 M
Answers:
Acidic
[OH-] = 3.08 <span>× 10-13 M</span>
Answer:
The given atom is of Ca.
Explanation:
Given data:
Speed of atom = 1% of speed of light
De-broglie wavelength = 3.31×10⁻³ pm (3.31×10⁻³ / 10¹² = 3.31×10⁻¹⁵ m)
What is element = ?
Solution:
Formula:
m = h/λv
m = mass of particle
h = planks constant
v = speed of particle
λ = wavelength
Now we will put the values in formula.
m = h/λv
m = 6.63×10⁻³⁴kg. m².s⁻¹/3.31×10⁻¹⁵ m ×( 1/100)×3×10⁸ m/s
m = 6.63×10⁻³⁴kg. m².s⁻¹/ 0.099×10⁻⁷m²/s
m = 66.97×10⁻²⁷ Kg/atom
or
6.69×10⁻²⁶ Kg/atom
Now here we will use the Avogadro number.
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
Now in given problem,
6.69×10⁻²⁶ Kg/atom × 6.022 × 10²³ atoms/ mol × 1000 g/ 1kg
40.3×10⁻³×10³g/mol
40.3 g/mol
So the given atom is of Ca.