Let us check each statement one by one
a) Sb has a lower ionization energy but a higher electronegativity than I. : As per values given : Definitely Sb has lower ionization energy however the electronegativity of Sb is lower than that of iodine
b) Sb has a higher ionization energy but a lower electronegativity than I. FAlse:
Sb has lower ionization energy than I
c) Sb has a lower ionization energy and a lower electronegativity than I. True
d) Sb has a higher ionization energy and a higher electronegativity than I. False
Absorbed photon energy
Ea = hc/λ.. (Planck's equation)
Ea = hc / 92.05^-9m
<span>Energy emitted
Ee = hc/ 1736^-9m </span>
Energy retained ..
∆E = Ea - Ee = hc(1/92.05<span>^-9 - 1/1736^-9) </span>
<span>∆E = (6.625^-34)(3.0^8) (1.028^7)
∆E = 2.04^-18 J </span>
<span>Converting J to eV (1.60^-19 J/eV)
∆E = 2.04^-18 / 1.60^-19
∆E = 12.70 eV </span>
<span>Ground state (n=1) energy for Hydrogen = - 13.60eV </span>
<span>New energy state = (-13.60 + 12.70)eV = -0.85 eV </span>
<span>Energy states for Hydrogen
En = - (13.60 / n²) </span>
n² = -13.60 / -0.85 = 16
n = 4
Answer: both compounds have ionic bond between metal and non-metal
Explanation: both Sr and Mg are earth alkaline metals and form ions Mg^2+
And Sr^2+. Br forms ion Br^- and S ion is S^2+.
The activity series goes top to bottom, most active to least active elements, going: Li, K, Ba, Sr, Ca, Na, Mg, Mn, Zn, Fe, Cd, Co, Ni, Sn, Pb, H, Cu, Ag, Hg, Au.
Thus, your list of metals would go from most reactive to least reactive: Li, K, Mg, Zn, Fe, Cu, Au
Water moves from an area of higher water potential (aka. "more water" in simple language) to an area of lower water potential (aka. "less water" in simple language).
For A, cells in carrots have water stored in their cytoplasm, where many soluble substances may be found (e.g. sodium ions). On the other hand, pure water has no other soluble substances other than the water molecules (I.e. H2O). Pure water will thus have a higher water potential as compared to the water in carrot cells, and so, water will move from pure water into the carrot cells via osmosis down a concentration gradient.
B. Corn syrup is water that has high concentrations of sugars, thus it is very likely to have a lower water potential than the cells of carrots. Water will move from within the cells of carrots and out to the corn syrup, down a concentration gradient.
C. The water in carrot cells will stay the same, since carrot cells have the same water potential as the surrounding solution which has the same water potential as cytoplasm.
Hope this helps! :)