A. Kinetic energy
it is moving
Answer:

=> The colour of this stone is usually a pale greenish blue, owing to the presence of iron impurities. Stones that are treated with heat look more blue than green. On the Mohs scale of hardness, aquamarine ranges between 7.5 and 8 making it a relatively hard gemstone.
=> The best way to identify a real aquamarine stone is by looking at its colour. In its natural form, they have a pale blue colour, which is similar to seawater. They may have a slight green or yellow tint as well. Naturally occurring gems have excellent clarity and transparency.
=> The hardness of the stone is another feature you can use to identify the stone. Aquamarine stones are hard and they don’t get scratches easily. However, they can easily scratch glass and other such surfaces. So, if you find visible scratches on the stone, rethink your decision to buy it.
=> Most faceted aquamarine stones are clean to the eye and clear of any inclusions. However, translucent and opaque aquamarine is also available. These are usually fashioned into cabochons or beads. In some cases, inclusions may appear as parallel tubes. Such stones can be crafted to show a cat’s eye. Stones with cat’s eye and star effect are rare and highly priced.
The given question is incomplete. The complete question is:
A chemist prepares a solution of barium chloride by measuring out 110 g of barium chloride into a 440 ml volumetric flask and filling the flask to the mark with water. Calculate the concentration in mole per liter of the chemist's barium chloride solution. Round your answer to 3 significant digits.
Answer: Concentration of the chemist's barium chloride solution is 1.20 mol/L
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.

where,
n = moles of solute
= volume of solution in L
moles of
(solute) = 
Now put all the given values in the formula of molality, we get

Therefore, the molarity of solution is 1.20 mol/L
Answer:
beryllium iodide has a molar mass of 262.821 g mol−1 , which means that 1 mole of beryllium iodide has a mass of 262.821 g . To find the mass of 0.02 moles of beryllium iodide, simply multiply the number of moles by the molar mass in conversion factor form.
Explanation: