Answer:
grams H₂O produced = 8.7 grams
Explanation:
Given 2C₂H₆(g) + 7O₂(g) => 4CO₂(g) + 6H₂O(l)
7g 18g ?g
Plan => Convert gms to moles => determine Limiting reactant => solve for moles water => convert moles water to grams water
Moles Reactants
moles C₂H₆ = 7g/30g/mol = 0.233mol
moles O₂ = 18g/32g/mol = 0.563mol
Limiting Reactant => (Test for Limiting Reactant) Divide mole value by respective coefficient of balanced equation; the smaller number is the limiting reactant.
moles C₂H₆/2 = 0.233/2 = 0.12
moles O₂/7 = 0.08
<u><em>Limiting Reactant is O₂</em></u>
Moles and Grams of H₂O:
Use Limiting Reactant moles (not division value) to calculate moles of H₂O.
moles H₂O = 6/7(moles O₂) = 6/7(0.562) moles H₂O = 0.482 mole H₂O yield
grams H₂O = (0.482mol)(18g·mol⁻¹) = 8.7 grams H₂O
Answer:
The enthalpy of the solution is -35.9 kJ/mol
Explanation:
<u>Step 1:</u> Data given
Mass of lithiumchloride = 3.00 grams
Volume of water = 100 mL
Change in temperature = 6.09 °C
<u>Step 2:</u> Calculate mass of water
Mass of water = 1g/mL * 100 mL = 100 grams
<u>Step 3:</u> Calculate heat
q = m*c*ΔT
with m = the mass of water = 100 grams
with c = the heat capacity = 4.184 J/g°C
with ΔT = the chgange in temperature = 6.09 °C
q = 100 grams * 4.184 J/g°C * 6.09 °C
q =2548.1 J
<u>Step 4:</u> Calculate moles lithiumchloride
Moles LiCl = mass LiCl / Molar mass LiCl
Moles LiCl = 3 grams / 42.394 g/mol
Moles LiCl = 0.071 moles
<u>Step 5:</u> Calculate enthalpy of solution
ΔH = 2548.1 J /0.071 moles
ΔH = 35888.7 J/mol = 35.9 kJ/mol (negative because it's exothermic)
The enthalpy of the solution is -35.9 kJ/mol
The percentage of CO2 increased 48 percent. Hope this helped!
<span>Moles = 0.252
Molarity = 1.07
This question is badly worded. You're asking for moles and I suspect you really want molarity. The number of moles of ammonium chloride you have in the solution will remain constant regardless of the volume of the solution. However, the molarity of the solution will differ depending upon how concentrated it is. So I'll give you both the number of moles of ammonium chloride you have, and the molarity of the resulting solution. Please talk to your teacher if you're confused by the difference between moles and molarity.
The formula for ammonium chloride is NH4Cl. So let's calculate it's molar mass. Start by looking up the associated atomic weights.
Atomic weight nitrogen = 14.0067
Atomic weight hydrogen = 1.00794
Atomic weight chlorine = 35.453
Molar mass NH4Cl = 14.0067 + 4 * 1.00794 + 35.453 = 53.49146 g/mol
Moles NH4Cl = 13.5 g / 53.49146 g/mol = 0.252376735 mol
Molarity is defined as moles per liter, so let's divide the number of moles we have by the volume in liters. So:
0.252376735 mol / 0.235 l = 1.073943551 M
Rounding to 3 significant figures gives: 0.252 moles, 1.07 molarity.</span>