Answer:
T2 = 51.6°C
Explanation:
Given:
P1 = 1.01 atm
T1 = 25°C + 273 = 298K
P2 = 1.10 atm
T2 = ?
P1/T1 = P2/T2
Solving for T2,
T2 = (P2/P1)T1
= (1.10 atm/1.01 atm)(298K)
= 324.6 K
= 51.6°C
where Tc = Tk - 273
Evaporation technique is used to separate a compound dissolved in a solvent by vaporizing the solvent and converting it to gaseous state. This leaves behind the solid residue present in the solution after the pure solvent is vaporized. The solvent vapors can be collected and condensed to get pure solvent. But the solid residue cannot be considered pure as it is the left over solid after all the solvent is evaporated. If the solution has some impurities, the solid left over includes all of the impurities. So, we cannot obtain a pure solid in evaporation technique.
The molecules of hydrogen gas that are formed is when 48.7 g of sodium are added to water is 6.375 x 10²³ molecules
<u><em>calculation</em></u>
2 Na +2H₂O → 2 NaOH +H₂
Step 1: find the moles of sodium (Na)
moles =mass÷ molar mass
from periodic table the molar mass of Na = 23 g/mol
moles= 48.7 g÷ 23 g/mol =2.117 moles
Step 2:use the mole ratio to determine the moles of H₂
from given equation Na:H₂ is 2:1
therefore the moles of H₂ = 2.117 moles x 1/2=1.059 moles
Step 3: find the molecules of H₂ using the Avogadro's law
According to Avogadro's law 1 mole = 6.02 x 10²³ molecules
1.059 moles = ? molecules
by cross multiplication
= [(1.059 moles x 6.02 x10²³ molecules) / 1 mole] =6.375 x 10²³ molecules
beneath the oceanic crust and create magma where two tectonic plates meet at a divergent boundary.
Answer is (2) - hydrogen carbonate
<em>Explanation:</em>
NaHCO₃ is an ionic compound which is made from Na⁺ and HCO₃⁻ ions. The decomposition is
NaHCO₃ → Na⁺ + HCO₃⁻
Among the resulted ions, Na⁺ is a monatomic ion while HCO₃⁻ is a polyatomic ion.
<em>Polyatomic ions mean ions which are made of two or more different atoms.</em>
HCO₃⁻ is made from 3 atoms as H, C and O. The name of HCO₃⁻ ion is bicarbonate or hydrogen carbonate.