Answer:
0.677 moles
Explanation:
Take the atomic mass of K = 39.1, O =16.0, P = 31.0
no. of moles = mass / molar mass
no. of moles of K3PO4 used = 4.79 / (39.1x3 + 31 + 16x4)
= 0.02256 mol
From the equation, the mole ratio of KOH : K3PO4 = 3 :1,
meaning every 3 moles of KOH used, produces 1 mole of K3PO4.
So, using this ratio, let the no. of moles of KOH required to be y.
y = 0.02256 x3
y = 0.0677 mol
If you don't find exactly 0.677 moles as one of the options, go for the closest one. A very slight error may occur because of taking different significant figures of atomic masses when calculating.
Answer:
Compound X has a molar mass of 316.25 g*mol^-1 and the following composition:
element & mass %
phosphorus & 39.18%
sulfur & 60.82%
Write the molecular formula of X.
Explanation:
The given molecule of phosphorus and sulfur has molar mass --- 316.25 g.
Empirical formula calculation:
element: phosphorus sulfur
co9mposition: 39.185% 60.82%
divide with
atomic mass: 39.185/31.0 g/mol 60.82/32.0g/mol
=1.26mol 1.90mol
smallest mole ratio: 1.26mol/1.26mol =1 1.90mol/1.26 mol =1.50
multiply with 2: 2 3
Hence, the empirical formula is:
P2S3.
Mass of empirical formula is:
158.0g/mol
Given, molecule has molar mass --- 316.25 g/mol
Hence, the ratio is:
316.25g/mol/158.0 =2
Hence, the molecular formula of the compound is :
2 x (P2S3)
=
It is more likely 9. pH 4 is acidic and pH 9 is basic, and as the pH of a substance gets closer to 0 or 14, the substance becomes more corrosive or reactive. As 4 is closer to 0 than 9 is to 14, there is a much higher chance the solution has a pH of 9, because pH 4 is less neutral and therefore more corrosive/reactive than pH 9.
Answer:
Percentage lithium by mass in Lithium carbonate sample = 19.0%
Explanation:
Atomic mass of lithium = 7.0 g; atomic mass of Chlorine = 35.5 g; atomic mass of carbon = 12.0 g; atomic mass of oxygen = 16.0 g
Molar mass of lithium chloride, LiCl = 7 + 35.5 = 42.5 g
Percentage by mass of lithium in LiCl = (7/42.5) * 100% = 16.4 % aproximately 16%
Molar mass of lithium carbonate, Li₂CO₃ = 7 * 2 + 12 + 16 * 3 =74.0 g
Percentage by mass of lithium in Li₂CO₃ = (14/74) * 100% = 18.9 % approximately 19%
Mass of Lithium carbonate sample = 2 * 42.5 = 85.0 g
mass of lithium in 85.0 g Li₂CO₃ = 19% * 85.0 g = 16.15 g
Percentage by mass of lithium in 85.0 g Li₂CO₃ = (16.15/85.0) * 100 % = 19.0%
Percentage lithium by mass in Lithium carbonate sample = 19.0%
Answer:
Properties describe physical matter.
Explanation: