The planetary temperature energy balance is obtained by radiating back the absorbed radiation energy from outer-space, by the planet and thus acquiring thermal equilibrium.
What is the process of attaining thermal equilibrium by Earth?
The Stefan-Boltzmann law states that the more the temperature a planet has, the more it will radiate out to reach thermal equilibrium.
We know that outer space contains large masses of radiative energy freely distributed in its vast expanse. A small fraction of this energy is absorbed by the Earth through the atmosphere, surface land, clouds etc.
Now, radiative balance is achieved when a planet's surface continuously warms up until it reaches its peak at which point the same amount of absorbed energy can then be radiated back to space. The relative amount of energy radiated back by a planet is dependent upon the size of the planet.
A colder planet relatively absorbs lower amount of radiation energy from space. In some time, as the planet heats up enough, the energy is radiated back to the space attaining thermal equilibrium.
Learn more about Stefan-Boltzmann law here:
<u>brainly.com/question/14919749</u>
#SPJ4
Answer: Relative motion
Explanation: If two objects are moving either towards or away from each other with both having their velocities in a reference frame and someone is outside this reference frame seeing the motion of the two objects.
The observer ( in his own frame of reference) will measure a different velocity as opposed to the velocities of the two object in their own reference frame. p
Both the velocity measured by the observer in his own reference frame and the velocity of both object in their reference is correct.
Velocities of this nature that have varying values based on motion referenced to another body is known as relative velocity.
Motion of this nature is known as relative motion.
<em>Note that the word reference frame is simply any where the motion is occurring and the specified laws of motion is valid</em>
<em />
For this example of ours, the reference frame of the companion is the train and the telephone poles has their reference frame as the earth.
The companion will measure the velocity of the telephone poles relative to him and the velocity of the telephone pole relative to an observer outside the train will be of a different value.
B. I think is the correct answer
Answer:
Wavelength.
Explanation:
1 period, or wavelength, is measured from one crest to another or from one trough to another.
Answer:
Explanation:
Momentum conservation
Kinetic energy conservation
Solve the system