" This manual applies to Compact Liquid <span>Fuel Pumps & </span>Dispensers<span> The </span>liquid pressure<span> range is from 0.5 - 20m These totals </span>can<span> be displayed by </span>pressing<span> the CLEAR </span>button<span> on the preset keypad five times in When connecting to sites </span>powered<span> by. "</span>
Answer:
v₀ₓ = 63.5 m/s
v₀y = 54.2 m/s
Explanation:
First we find the net launch velocity of projectile. For that purpose, we use the formula of kinetic energy:
K.E = (0.5)(mv₀²)
where,
K.E = initial kinetic energy of projectile = 1430 J
m = mass of projectile = 0.41 kg
v₀ = launch velocity of projectile = ?
Therefore,
1430 J = (0.5)(0.41)v₀²
v₀ = √(6975.6 m²/s²)
v₀ = 83.5 m/s
Now, we find the launching angle, by using formula for maximum height of projectile:
h = v₀² Sin²θ/2g
where,
h = height of projectile = 150 m
g = 9.8 m/s²
θ = launch angle
Therefore,
150 m = (83.5 m/s)²Sin²θ/(2)(9.8 m/s²)
Sin θ = √(0.4216)
θ = Sin⁻¹ (0.6493)
θ = 40.5°
Now, we find the components of launch velocity:
x- component = v₀ₓ = v₀Cosθ = (83.5 m/s) Cos(40.5°)
<u>v₀ₓ = 63.5 m/s</u>
y- component = v₀y = v₀Sinθ = (83.5 m/s) Sin(40.5°)
<u>v₀y = 54.2 m/s</u>
Joseph's experiment could be improved by using the same antenna at each part of the house during each trial instead of using different antenna. By doing so, he can obtain accurate results how is the signal in different part of the house under the same conditions (despite the location). So, he will see the dependence of the signal on the location. If he uses different antenna, than this antenna can also have influence of the signal.
Hey there,
Your question states: What factors affect the speed of water waves
Let's get one thing out the way, (wavelength) does

affect the the speed of water. If anything, it would be how high the wavelength's are. The higher the wavelengths are, the more that it would affect the speed, because there very high, but if it were to go longer on the width side, that would increase the speed, but that's not the case. Your correct answer would be (higher wavelength).
Hope this really helps you.
Answer:
<u><em>Electric Potential Energy:</em></u>
The energy that is needed to move a charge against an electric firld is called Electric Potential Energy
<u><em>Electric Potential Difference:</em></u>
The amount of work done in carrying a unit charge from one point to an other in an electric field is called Electric Potential Difference.
<u><em>Relation:</em></u>
Relation between Electric potential and electrical potential energy is given by

Here PE represents Electric potential energy
and
is Electric potential difference
it means electric potential difference is the difference in electric potential energy divided by the charge.