Answer:
There are three ways an object can accelerate: a change in velocity, a change in direction, or a change in both velocity and direction.
Explanation:
Answer:
K = 9.53 MeV
Explanation:
The kinetic energy that the alpha particle has emitted, is the energy in excess after removing the resting energy of the atoms and the helium nucleus that forms the alpha particle
Since energy and masses are related and cannot be
m₀ c² =
c² + m_He c²+ K
K = c² (m₀ - m_{f} - m_He)
the mass of the Helium atom is 4 u
K = (3 10⁸)² (211,988868 -207.976652 - 4,002) 1,661 10⁻²⁷
K = 14,949 10⁻¹¹ (0.0102)
K = 1,527 10⁻¹² J
let's reduce 1 J = 6,242 10¹² MeV
K = 9.53 MeV
By reading the fine details of the question, carefully and analytically, I have determined that there's no list of modifications to choose from.
The strength of the magnetic field of a solenoid depends on the electric current in its coil windings, the number of wire turns in its coil windings, and the material in its core.
In order to <em>DE</em>crease the strength of its magnetic field, any one or more of these steps could do the job:
-- DEcrease the electric current in its coil windings. This can be accomplished by decreasing the voltage of the power source that energizes the coil, and/or increasing the resistance of the wire in the coil.
-- DEcrease the number of wire turns in the coil.
-- If the solenoid has anything in its core, change the core to something with a lower magnetic 'permeability'. An Iron core will produce the greatest magnetic field strength. Air, vacuum, or NO core will produce the lowest magnetic field strength.
Answer:
Answer is D
Explanation:
By changing the direction of the current moving through the wire will change polarity of the magnet but it will not affect the strength of the magnet.
A. Mountain ranges linking in England and America