Passengers which are facing forward in the direction that train is moving, their bodies will move forward in application of sudden stop of train.
<h3>What is force of inertia?</h3>
Force of inertia is the force which acts in the opposite direction of the force of acceleration acting on the body.
Given infroamtion-
The passengers are facing forward in the direction that the train is moving.
The train comes to a sudden stop.
Lets see what happens step wise-
- Here, the train in moving in the forward direction and the passengers are also facing forward in the direction that the train is moving.
- Now the train comes to a sudden stop. By this sudden stop the train stops suddenly but all the object including the passengers is still travelling forward due to the inertia force.
- Thus all the passenger will tend to move in the direction as they are still travelling.
Hence, passengers which are facing forward in the direction that train is moving, their bodies will move forward in application of sudden stop of train.
Learn more about the force of inertia here;
brainly.com/question/10454047
The circumference of a circle is (pi) x (diameter)
The circumference of the cupcake is (pi) x (5 cm)
Halfway around is (1/2) x (pi) x (5 cm) = (2.5 pi cm) = <em>about 7.85 cm</em>
The 'why' appears up above, in the first 2 lines of this solution.
Answer:
meters
Explanation:The question ask for the maximum value of the function f(t) which can be find by find the maxima of the function
The maxima of the function occurs when the slope is zero. i.e.

Hence the maxima occurs at t=1.63 seconds
The maximum value of f is

hence maximum height is found to be
meters
I believe this is what you have to do:
The force between a mass M and a point mass m is represented by

So lets compare it to the original force before it doubles, it would just be the exact formula so lets call that F₁
So F₁ = G(Mm/r^2)
Now the distance has doubled so lets account for this in F₂:
F₂ = G(Mm/(2r)^2)
Now square the 2 that gives you four and we can pull that out in front to give
F₂ =
G(Mm/r^2)
Now we can replace G(Mm/r^2) with F₁ as that is the value of the force before alterations
now we see that:
F₂ =
F₁
So the second force will be 0.25 (1/4) x 1600 or 400 N.
The free-body diagram of an apple falling through the air has weight of the apple pointing downwards and the air-resistance on the apple acting upwards.
When an object falls from up to the ground, the object falls under in the influence of acceleration due to gravity.
The vertical component of the force on the apple as it falls trough the air is given as;
∑Fy = 0
Fₙ - W = 0
Fₙ = W
where;
- <em>Fₙ is the frictional force on the apple acting upwards</em>
- <em>W is the weight of the apple acting downwards</em>
The free-body diagram of the apple is represented as follows;
↑ Fₙ
Ο
↓ W
Thus, the free-body diagram of an apple falling through the air has weight of the apple pointing downwards and the air-resistance on the apple acting upwards.
Learn more here:brainly.com/question/18770265