Answer:
The time constant is 1.049.
Explanation:
Given that,
Charge 
We need to calculate the time constant
Using expression for charging in a RC circuit
![q(t)=q_{0}[1-e^{-(\dfrac{t}{RC})}]](https://tex.z-dn.net/?f=q%28t%29%3Dq_%7B0%7D%5B1-e%5E%7B-%28%5Cdfrac%7Bt%7D%7BRC%7D%29%7D%5D)
Where,
= time constant
Put the value into the formula
![0.65q_{0}=q_{0}[1-e^{-(\dfrac{t}{RC})}]](https://tex.z-dn.net/?f=0.65q_%7B0%7D%3Dq_%7B0%7D%5B1-e%5E%7B-%28%5Cdfrac%7Bt%7D%7BRC%7D%29%7D%5D)





Hence, The time constant is 1.049.
Answers:
a) 
b) 
c) 
Explanation:
<h3>a) Impulse delivered to the ball</h3>
According to the Impulse-Momentum theorem we have the following:
(1)
Where:
is the impulse
is the change in momentum
is the final momentum of the ball with mass
and final velocity (to the right) 
is the initial momentum of the ball with initial velocity (to the left) 
So:
(2)
(3)
(4)
(5)
<h3>b) Time </h3>
This time can be calculated by the following equations, taking into account the ball undergoes a maximum compression of approximately
:
(6)
(7)
Where:
is the acceleration
is the length the ball was compressed
is the time
Finding
from (7):
(8)
(9)
(10)
Substituting (10) in (6):
(11)
Finding
:
(12)
<h3>c) Force applied to the ball by the bat </h3>
According to Newton's second law of motion, the force
is proportional to the variation of momentum
in time
:
(13)
(14)
Finally:

The answer to the first question is that plants make glucose and oxygen by taking in CO2 and H20.
The answer to the second question is having a heavier mass increases the force of a moving object. That is the Second Law of Motion, F = ma.
X
Hot air rises = it's less dense than cold air = falls