Answer:
(3) The period of the satellite is independent of its mass, an increase in the mass of the satellite will not affect its period around the Earth.
(4) he gravitational force between the Sun and Neptune is 6.75 x 10²⁰ N
Explanation:
(3) The period of a satellite is given as;

where;
T is the period of the satellite
M is mass of Earth
r is the radius of the orbit
Thus, the period of the satellite is independent of its mass, an increase in the mass of the satellite will not affect its period around the Earth.
(4)
Given;
mass of the ball, m₁ = 1.99 x 10⁴⁰ kg
mass of Neptune, m₂ = 1.03 x 10²⁶ kg
mass of Sun, m₃ = 1.99 x 10³⁰ kg
distance between the Sun and Neptune, r = 4.5 x 10¹² m
The gravitational force between the Sun and Neptune is calculated as;

Answer:
Its graph 1
Explanation:
She started at the origin and kept riding her bike until she stopped which causes the line to go staright because she's not moving.
Yes you can, with using scientific experiment.
Ask a question -- Do background Research -- Construct a Hypothesis --Test with an Experiment -- Procedure working? -- Yes or no? -- Analyze Data and Draw Conclusions
With an experiment you can discover if its correct or not.
Hope this helps ! <3
Explanation:
We'll need two equations.
v² = v₀² + 2a(x - x₀)
where v is the final velocity, v₀ is the initial velocity, a is the acceleration, x is the final position, and x₀ is the initial position.
x = x₀ + ½ (v + v₀)t
where t is time.
Given:
v = 47.5 m/s
v₀ = 34.3 m/s
x - x₀ = 40100 m
Find: a and t
(47.5)² = (34.3)² + 2a(40100)
a = 0.0135 m/s²
40100 = ½ (47.5 + 34.3)t
t = 980 s