Reorder the terms: 2n + -5(5 + n) = 8n + 3(1 + -5n) 2n + (5 * -5 + n * -5) = 8n + 3(1 + -5n) 2n + (-25 + -5n) = 8n + 3(1 + -5n) Reorder the terms: -25 + 2n + -5n = 8n + 3(1 + -5n) Combine like terms: 2n + -5n = -3n -25 + -3n = 8n + 3(1 + -5n) -25 + -3n = 8n + (1 * 3 + -5n * 3) -25 + -3n = 8n + (3 + -15n) Reorder the terms: -25 + -3n = 3 + 8n + -15n Combine like terms: 8n + -15n = -7n -25 + -3n = 3 + -7n Solving -25 + -3n = 3 + -7n Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '7n' to each side of the equation. -25 + -3n + 7n = 3 + -7n + 7n Combine like terms: -3n + 7n = 4n -25 + 4n = 3 + -7n + 7n Combine like terms: -7n + 7n = 0 -25 + 4n = 3 + 0 -25 + 4n = 3 Add '25' to each side of the equation. -25 + 25 + 4n = 3 + 25 Combine like terms: -25 + 25 = 0 0 + 4n = 3 + 25 4n = 3 + 25 Combine like terms: 3 + 25 = 28 4n = 28 Divide each side by '4'. n = 7 Simplifying n = 7
Answer:
Step-by-step explanation:
Answer:
The number of cards Paul had at the beginning was 64 cards
Step-by-step explanation:
Here we have a word problem as follows
Paul traded 13 baseball card to Dan for 4 new packs of 6 card each
Number of cards received from Dan = 6 × 4 = 24
Number of cards traded to Dan = 13
Net number of cards traded = 24 - 13 = 11
Total number of cards Paul now has = 75 cards
Therefore since Paul gained 11 cards to make his total number of cards = 75, then;
The initial amount of cards Paul had = 75 - 11 = 64 cards.
Hope this helps but the answer is A.(-5,2)