Answer: peanuts could be a cause of it because its one of the most allergenic foods
Explanation:
The most important prerequisite for assessing the quality of health care delivery system is to collect the medical records of the patients admitted and discharged from the hospital.
Change it up a bit <3
Based on the information we have, we can confirm that when Simon is looking for the bottle containing pleural fluid, he should gravitate towards the bottle with a clear or slightly yellow liquid.
<h3>Why should he choose this bottle?</h3>
Simon is looking for pleural fluid. This means that he is looking to find a bottle with a sample of the fluid used by the lungs to allow breathing to take place. This liquid is described as a clear or slightly yellow-colored liquid.
Therefore, we can confirm that when Simon is looking for the bottle containing pleural fluid, he should choose the bottle with a clear or slightly yellow liquid.
To learn more about the lungs visit:
brainly.com/question/271268?referrer=searchResults
Search Results
Featured snippet from the web
These include the paired ovaries, paired uterine tubes, uterus (uterine horns), cervix, vagina, and the mammary glands. The ovaries are both an exocrine organ producing cells, i.e., ova, and an endocrine organ, secreting hormones, i.e., estrogen and progesterone.
I love statistics So I will use The principles of it
![\begin{cases}\\ \dag \: \underline{\Large\bf Formulas\:of\:Statistics} \\ \\ \bigstar \: \underline{\rm Mean:} \\ \\ \bullet\sf M=\dfrac {\Sigma x}{n} \\ \bullet\sf M=a+\dfrac {\Sigma fy}{\Sigma f} \\ \\ \bullet\sf M=A +\dfrac {\Sigma fy^i}{\Sigma f}\times c \\ \\ \bigstar \: \underline{\rm Median :} \\ \\ \bullet\sf M_d=\dfrac {n+1}{2} \:\left[\because n\:is\:odd\:number\right] \\ \bullet\sf M_d=\dfrac {1}{2}\left (\dfrac {n}{2}+\dfrac {n}{2}+1\right)\:\left[\because n\:is\:even\:number\right] \\ \\ \bullet\sf M_d=l+\dfrac {m-c}{f}\times i \\ \\ \bigstar \: {\boxed{\sf M_0=3M_d-2M}}\end {cases}](https://tex.z-dn.net/?f=%20%5Cbegin%7Bcases%7D%5C%5C%20%20%5Cdag%20%5C%3A%20%5Cunderline%7B%5CLarge%5Cbf%20Formulas%5C%3Aof%5C%3AStatistics%7D%20%5C%5C%20%5C%5C%20%5Cbigstar%20%5C%3A%20%5Cunderline%7B%5Crm%20Mean%3A%7D%20%5C%5C%20%5C%5C%20%5Cbullet%5Csf%20M%3D%5Cdfrac%20%7B%5CSigma%20x%7D%7Bn%7D%20%5C%5C%20%5Cbullet%5Csf%20M%3Da%2B%5Cdfrac%20%7B%5CSigma%20fy%7D%7B%5CSigma%20f%7D%20%5C%5C%20%5C%5C%20%5Cbullet%5Csf%20M%3DA%20%2B%5Cdfrac%20%7B%5CSigma%20fy%5Ei%7D%7B%5CSigma%20f%7D%5Ctimes%20c%20%5C%5C%20%5C%5C%20%5Cbigstar%20%5C%3A%20%5Cunderline%7B%5Crm%20Median%20%3A%7D%20%5C%5C%20%5C%5C%20%5Cbullet%5Csf%20M_d%3D%5Cdfrac%20%7Bn%2B1%7D%7B2%7D%20%5C%3A%5Cleft%5B%5Cbecause%20n%5C%3Ais%5C%3Aodd%5C%3Anumber%5Cright%5D%20%5C%5C%20%5Cbullet%5Csf%20M_d%3D%5Cdfrac%20%7B1%7D%7B2%7D%5Cleft%20%28%5Cdfrac%20%7Bn%7D%7B2%7D%2B%5Cdfrac%20%7Bn%7D%7B2%7D%2B1%5Cright%29%5C%3A%5Cleft%5B%5Cbecause%20n%5C%3Ais%5C%3Aeven%5C%3Anumber%5Cright%5D%20%5C%5C%20%5C%5C%20%5Cbullet%5Csf%20M_d%3Dl%2B%5Cdfrac%20%7Bm-c%7D%7Bf%7D%5Ctimes%20i%20%5C%5C%20%5C%5C%20%5Cbigstar%20%5C%3A%20%7B%5Cboxed%7B%5Csf%20M_0%3D3M_d-2M%7D%7D%5Cend%20%7Bcases%7D)