Answer:
hard
Step-by-step explanation:
I have never seen this before
Answer:
The length of BC is needed because it is the side opposite ∠A.
Step-by-step explanation:
Given the right angles triangle as shown in the attachment, we can get sin(A) without using Pythagoras theorem. Instead we will use SOH CAH TOA trigonometry identity.
According to SOH:
Sin(A) = Opposite/Hypotenuse
Sin(A) = |BC|/|AB|
Opposite side of the triangle is the side facing ∠A.
Based on the formula, we will need to get the opposite side of the triangle which is length BC for us to be able to determine sinA since the hypotenuse is given.
1 it’s easy cocoa donut oml OOOF duck
Answer:
(i) A truth table shows how the truth or falsity of a compound statement depends on the truth or falsity of the simple statements from which it's constructed.
Since A ∧ B (the symbol ∧ means A and B) is true only when both A and B are true, its negation A NAND B is true as long as one of A or B is false.
Since A ∨ B (the symbol ∨ means A or B) is true when one of A or B is true, its negation A NOR B is only true when both A and B are false.
Below are the truth tables for NAND and NOR connectives.
(ii) To show that (A NAND B)∨(A NOR B) is equivalent to (A NAND B) we build the truth table.
Since the last column (A NAND B)∨(A NOR B) is equal to (A NAND B) it follows that the statements are equivalent.
(iii) To show that (A NAND B)∧(A NOR B) is equivalent to (A NOR B) we build the truth table.
Since the last column (A NAND B)∧(A NOR B) is equal to (A NOR B) it follows that the statements are equivalent.