Answer:
I will just choosé the second one
Because it is possible to compare sizes In one triangle rather than comparing with another one which we don't reàlly know of its sizes.
Answer:
1) -0.669
2) -0.669
3) 0.669
Step-by-step explanation:
Since we are subtracting or adding multipled of pi, we will either obtain 0.669 or -0.669 as our answer for each of the three different questions.
Cosine is the x-coordinate in our orderes pairs. If our point ends up on the right side of the y-axis, the cosine will be positive. If our point ends up on left side, it will be negative.
Choose a thetha (I'm going to choose it in degrees) in the first quadrant to help with a visual.
If theta=70:
1) then 180-70=110 which is in second quadrant, so our cosines will be opposite in value.
2) then 180+70=250 which is in third quadrant, so our cosines will be opposite in value.
3) then 4×180-70=720-70=650 =1(360)+290 which ends up in the 4th quadrant which means the consines will have the same value.
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
<u>Algebra I</u>
<u>Calculus</u>
Implicit Differentiation
The derivative of a constant is equal to 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Product Rule: ![\frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Chain Rule: ![\frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Quotient Rule: ![\frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5B%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%5D%3D%5Cfrac%7Bg%28x%29f%27%28x%29-g%27%28x%29f%28x%29%7D%7Bg%5E2%28x%29%7D)
Step-by-step explanation:
<u>Step 1: Define</u>
-xy - 2y = -4
Rate of change of the tangent line at point (-1, 4)
<u>Step 2: Differentiate Pt. 1</u>
<em>Find 1st Derivative</em>
- Implicit Differentiation [Product Rule/Basic Power Rule]:

- [Algebra] Isolate <em>y'</em> terms:

- [Algebra] Factor <em>y'</em>:

- [Algebra] Isolate <em>y'</em>:

- [Algebra] Rewrite:

<u>Step 3: Find </u><em><u>y</u></em>
- Define equation:

- Factor <em>y</em>:

- Isolate <em>y</em>:

- Simplify:

<u>Step 4: Rewrite 1st Derivative</u>
- [Algebra] Substitute in <em>y</em>:

- [Algebra] Simplify:

<u>Step 5: Differentiate Pt. 2</u>
<em>Find 2nd Derivative</em>
- Differentiate [Quotient Rule/Basic Power Rule]:
![y'' = \frac{0(x+2)^2 - 8 \cdot 2(x + 2) \cdot 1}{[(x + 2)^2]^2}](https://tex.z-dn.net/?f=y%27%27%20%3D%20%5Cfrac%7B0%28x%2B2%29%5E2%20-%208%20%5Ccdot%202%28x%20%2B%202%29%20%5Ccdot%201%7D%7B%5B%28x%20%2B%202%29%5E2%5D%5E2%7D)
- [Derivative] Simplify:

<u>Step 6: Find Slope at Given Point</u>
- [Algebra] Substitute in <em>x</em>:

- [Algebra] Evaluate:

Answer:
A
Step-by-step explanation:
To convert degrees to radians
radian measure = degree measure × 
Hence
radian measure = 150° × 
Cancel both 150 and 180 by 30, then
radian measure = 5 ×
= 
Is there a picture to this