Answer: Option (c) is the correct answer.
Explanation:
A limiting reagent is defined as a reagent that completely gets consumed in a chemical reaction. A limiting reagent limits the formation of products.
For example, we have given 5 mol of A and the reaction is 
Whereas when 4 mol B will react with 2 mol of A. Hence, 8 mol of B will react with 4 mol A as follows.
= 4 mol
As, the given moles of A is more than the required moles. Thus, it is considered as an excess reagent.
Hence, B is a limiting reagent because it limits the formation of products.
Thus, we can conclude that limiting reactant is the term used to describe the reactant that is used up completely and controls the amount of product that can be produced during a chemical reaction.
Explanation: Si4H10+O2>SiO2+H2O
2Si4H10 + 13O2 = 8SiO2 + 10H2O
The answer is 13.6 moles c
Answer:
By emitting an electron and an electron antineutrino, one of the neutrons in the carbon-14 atom decays to a proton and the carbon-14 (half-life of 5,700 ± 40 years) decays into the stable (non-radioactive) isotope nitrogen-14.
Half-life: 5,730 ± 40 years
Names: carbon-14, C-14, radiocarbon
Isotope mass: 14.003241 u
Answer:
285g of fluorine
Explanation:
To solve this problem we need to find the mass of Freon in grams. Then, with its molar mass we can find moles of freon and, as 1 mole of Freon, CCl₂F₂, contains 2 moles of fluorine, we can find moles of fluorine and its mass:
<em>Mass Freon:</em>
<em>2.00lbs * (454g / 1lb) = </em>908g of Freon
<em>Moles freon -Molar mass: 120.91g/mol- and moles of fluorine:</em>
908g of Freon * (1mol / 120.91g) =
7.5 moles of freon * (2moles Fluorine / mole Freon): 15 moles of fluorine
<em>Mass fluorine -Atomic mass: 19g/mol-:</em>
15 moles F * (19g / mol) =
<h3>285g of fluorine</h3>