Answer:
2487.51.
Explanation:
As per Boyle's law temperature remaining constant the volume of an ideal gas is inversely proportional to its pressure.
pV= k
therefore, p1V1 = p2V2
here V1 = 25.3, p2 = 8.04mm Hg
pressure p1 = 790.5 mm Hg
this means that
25.3×790.5 = 8.04V2
⇒V2= 2487.51
Hence, the required volume is, 2487.51.
Answer:
5.37 L
Explanation:
To solve this problem we need to use the PV=nRT equation.
First we <u>calculate the amount of CO₂</u>, using the initial given conditions for P, V and T:
- P = 785 mmHg ⇒ 785/760 = 1.03 atm
- T = 18 °C ⇒ 18 + 273.16 = 291.16 K
1.03 atm * 4.80 L = n * 0.082 atm·L·mol⁻¹·K⁻¹ * 291.16 K
We <u>solve for n</u>:
Then we use that value of n for another PV=nRT equation, where T=37 °C (310.16K) and P = 745 mmHg (0.98 atm).
- 0.98 atm * V = 0.207 mol * 0.082 atm·L·mol⁻¹·K⁻¹ * 310.16 K
And we <u>solve for V</u>:
The role of the salt bridge is to assure the neutrality of both compartments.
Hello!
The Chemical reaction is the following:
2F₂(g) + 2 H₂O(g) → O₂(g) + 4HF(g)
If we assume that all the gases are ideal gases,
we can describe the coefficients of this reaction as Volume rather than moles, so we can apply the following equations:

So,
2 L of Water Vapor reacts with the fluorine; and
1 L of Oxygen and
4 L of Hydrogen Fluoride are produced.
Have a nice day!
Are you referring to DNA?