The answer is in the attachment
<span>...........................................</span>
Using a punnet square,
h h
H Hh Hh
h hh hh
The offspring will be 50% Heterozygous dominant and 50% homozygous recessive.
This theory was first proposed by Nicolaus Copernicus. Copernicus was a Polish astronomer. He first published the heliocentric system in his book: De revolutionibus <span>orbium </span>coelestium<span> , "On the revolutions of the heavenly bodies," which appeared in 1543.</span>
Answer:
T_ww = 43,23°C
Explanation:
To solve this question, we use energy balance and we state that the energy that enters the systems equals the energy that leaves the system plus losses. Mathematically, we will have that:
E_in=E_out+E_loss
The energy associated to a current of fluid can be defined as:
E=m*C_p*T_f
So, applying the energy balance to the system described:
m_CW*C_p*T_CW+m_HW*C_p*T_HW=m_WW*C_p*T_WW+E_loss
Replacing the values given on the statement, we have:
1.0 kg/s*4,18 kJ/(kg°C)*25°C+0.8 kg/s*4,18 kJ/(kg°C)*75°C=1.8 kg/s*4,18 kJ/(kg°C)*T_WW+30 kJ/s
Solving for the temperature Tww, we have:
(1.0 kg/s*4,18 kJ/(kg°C)*25°C+0.8 kg/s*4,18 kJ/(kg°C)*75°C-30 kJ/s)/(1.8 kg/s*4,18 kJ/(kg°C))=T_WW
T_WW=43,23 °C
Have a nice day! :D
The acceleration of gravity on or near the surface of the Earth is 9.8 m/s².
Anything acted on only by gravity loses 9.8 m/s of upward speed, or gains
9.8 m/s of downward speed, every second.
Leaping straight upward at 1.8 m/s, Tina keeps rising until she runs out of
upward speed. That happens in (1.8/9.8) = 0.1837 second after the leap.
After that, Finkel's First Law of Motion takes over:
"What goes up must come down."
The dropping part of the leap is symmetrical with the first. Please don't
make me go through proving it. Tina hits the floor at the same speed of
1.8 m/s with which she left it, and it takes the same amount of time to drop
from the peak to the floor as it took to rise from the floor to the peak.
So her total time out of contact with the floor is
2 x (0.1837 sec) = 0.367 second (rounded)