Answer:
Given:
Thermal Kinetic Energy of an electron, 
= Boltzmann's constant
Temperature, T = 1800 K
Solution:
Now, to calculate the de-Broglie wavelength of the electron,
:

(1)
where
h = Planck's constant = 
= momentum of an electron
= velocity of an electron
= mass of electon
Now,
Kinetic energy of an electron = thermal kinetic energy



(2)
Using eqn (2) in (1):

Now, to calculate the de-Broglie wavelength of proton,
:

(3)
where
= mass of proton
= velocity of an proton
Now,
Kinetic energy of a proton = thermal kinetic energy



(4)
Using eqn (4) in (3):

Answer:
The taken is 
Explanation:
Frm the question we are told that
The speed of car A is 
The speed of car B is 
The distance of car B from A is 
The acceleration of car A is 
For A to overtake B
The distance traveled by car B = The distance traveled by car A - 300m
Now the this distance traveled by car B before it is overtaken by A is

Where
is the time taken by car B
Now this can also be represented as using equation of motion as

Now substituting values

Equating the both d

substituting values




Solving this using quadratic formula we have that

If the Earth didn't tilt then we wouldn't have seasons.
Answer:
a = 2 [m/s^2]
Explanation:
To solve this problem we must use the expressions of kinematics, we must bear in mind that when a body is at rest its velocity is zero.

where:
Vf = final velocity = 0
Vi = initial velocity = 60 [m/s]
a = desacceleration [m/s^2]
t = time = 30 [s]
Note: the negative sign of the above equation means that the car is slowing down, i.e. its speed decreases.
0 = 60 - (a*30)
a = 2 [m/s^2]