Answer:
The angular velocity I would have to rotate it in order to generate an emf of amplitude 1.0 V is 254.65 rad/s
Explanation:
given information:
B = 0.5 mT = 0.0005 T
N = 1000
r = 5 cm = 0.05 m
emf, ε = 1 V
according to Faraday's law
ε = -N dΦ/dt, Φ = B A
= - N d( B A)/dt
= - N d( B A cos ωt)/dt
= - N B A d(cos ωt)/dt
= N B A ω sin ωt
A = πr², so
ε = N B πr² ω sin ωt
where
ε = emf
N = number of coil turn
B = magnetic field
r = radius
ω = angular velocity
Φ = magnetic flux
emf maximum, sin ωt = 1. So,
ε = N B πr² ω
ω = ε/N B πr²
= 1/[(1000) (0.0005) π (0.05)²
= 254.65 rad/s
The answer:
the full question is as follow:
<span>A Texas rancher wants to fence off his four-sided plot of flat land. He measures the first three sides, shown as A, B, and C in Figure below , where A = 4.90 km and θC = 15°. He then correctly calculates the length and orientation of the fourth side D. What is the magnitude and direction of vector D?
As shown in the figure,
A + B + C + D = 0, so to find the </span>magnitude and direction of vector D, we should follow the following method:
D = 0 - (A + B + C) ,
let W = - (A + B + C), so the magnitude and direction of vector D is the same of the vector W characteristics
Magnitude
A + B + C = <span> (4.90cos7.5 - 2.48sin16 - 3.02cos15)I</span>
<span>+ (-4.9sin7.5 + 2.48cos16 + 3.02sin15)J
</span>= 1.25I +2.53J
the magnitude of W= abs value of (A + B + C) = sqrt (1.25² + 2.53²)
= 2.82
the direction of D can be found by using Dx and Dy value
we know that tan<span>θo = Dx / Dy = 1.25 / 2.53 =0.49
</span>tanθo =0.49 it implies θo = arctan 0.49 = 26.02°
direction is 26.02°
im not sure about most of this but ill try to help
so there are three formulas you need to know first: the formula for rate distance and time.
to find distance:
distance = rate * time
to find time:
time = distance / rate
and to find rate (which is what we need)
rate = distance / time
now we just use our formula and plug in the numbers
rate = distance * time
rate = 160 / 2 = 80
so our rate is 80. thats all i know i have no idea about the rest but i always use these messurments. im sure you can google most of it to get other formulas and calculators though. sorry i couldnt help much! good luck :D
The potential energy that the ball has at the top of the tower is its kinetic energy when it hits the ground. The second ball has more potential energy at the top, because you did more work on it to carry it up there. So it has more KE at the bottom. (A)
<h2>
Answer:Displacement</h2>
Explanation:
Potential energy is present in a spring because the spring is elongated and some work is done it to elongate it.
The elastic potential energy present in a spring is given by 
where
is the spring constant.It may vary from spring to spring and
is the displacement of the spring from its equalibrium position.
It is evident from the equation that potential energy in the spring increases as
increases.