The time must be measured with respect to gravity. As it falls, it has free fall that is the force acting on it will be the gravity.With the distance in account, d = 1/2 gt²
t = √(2d/g)
Answer:
Mass of the oil drop, 
Explanation:
Potential difference between the plates, V = 400 V
Separation between plates, d = 1.3 cm = 0.013 m
If the charge carried by the oil drop is that of six electrons, we need to find the mass of the oil drop. It can be calculated by equation electric force and the gravitational force as :


, e is the charge on electron
E is the electric field, 


So, the mass of the oil drop is
. Hence, this is the required solution.
I think the answer would be: The G-note's wavelength is longer
Here are the formula to calculate wavelength
Wavelength = Wave speed/Frequency
Which indicates that the wavelength will become larger as the frequency became smaller.
Answer:
Stress = 4.67 * 10^-7 N/m²
Explanation:
Young's modulus of the material = Stress/Strain
Given
Young's modulus = 228 x 10^9 Pa
Stress = 106,483 Pa
Required
Strain
From the formula;
Strain = Stress/Young modulus
Strain = 106,483 /228 x 10^9
Stress = 4.67 * 10^-7 N/m²
Answer:
a) F = 2250 Ib
b) F = 550 Ib
c) new max force ( F newmax ) = 2850 Ib
Explanation:
A) The force the wall of the elevator shaft exert on the motor if the elevator starts from rest and goes up
max capacity of elevator = 24000 Ibs
counterweight = 1000 Ibs
To calculate the force (F) :
we first calculate the Tension using this relationship
Counterweight (1000) - T = ( 1000 / g ) ( g/4 )
Hence T = 750 Ib
next determine F
750 + F - 2400 = 2400 / 4
hence F = 2250 Ib
B ) calculate Tension first
T - 1000 = ( 1000/g ) ( g/4)
T = 1250 Ib
F = 2400 -1250 - 2400/ 4
F = 550 Ib
C ) determine design limit
Max = 2400 * 1.2 = 2880 Ib
750 + new force - 2880 = 2880 / 4
new max force ( F newmax ) = 2850 Ib