Wow ! This one could have some twists and turns in it.
Fasten your seat belt. It's going to be a boompy ride.
-- The buoyant force is precisely the missing <em>30N</em> .
-- In order to calculate the density of the frewium sample, we need to know
its mass and its volume. Then, density = mass/volume .
-- From the weight of the sample in air, we can closely calculate its mass.
Weight = (mass) x (gravity)
185N = (mass) x (9.81 m/s²)
Mass = (185N) / (9.81 m/s²) = <u>18.858 kilograms of frewium</u>
-- For its volume, we need to calculate the volume of the displaced water.
The buoyant force is equal to the weight of displaced water, and the
density of water is about 1 gram per cm³. So the volume of the
displaced water (in cm³) is the same as the number of grams in it.
The weight of the displaced water is 30N, and weight = (mass) (gravity).
30N = (mass of the displaced water) x (9.81 m/s²)
Mass = (30N) / (9.81 m/s²) = 3.058 kilograms
Volume of displaced water = <u>3,058 cm³</u>
Finally, density of the frewium sample = (mass)/(volume)
Density = (18,858 grams) / (3,058 cm³) = <em>6.167 gm/cm³</em> (rounded)
================================================
I'm thinking that this must be the hard way to do it,
because I noticed that
(weight in air) / (buoyant force) = 185N / 30N = <u>6.1666...</u>
So apparently . . .
(density of a sample) / (density of water) =
(weight of the sample in air) / (buoyant force in water) .
I never knew that, but it's a good factoid to keep in my tool-box.
Answer:
The Scenario:
On a normal Sunday afternoon Mr. Golanski is sitting in his living room reading his book. He decides after a while to turn on the Television to see what’s on the news, (Mr. Golanski is using Radio waves when he turns his television on by signaling the TV from his remote control). After a few hours Mr. Golanski decides it’s time to have dinner. He heats up a quick meal in his microwave because he doesn’t have the patience for cooking. (He is using microwave radiation to heat his food because water molecules in food absorb the radiation). He sits down for his meal, and halfway through he starts to choke! In a panicked frenzy he runs to his bathroom to try and dislodge the obstacle from his throat. By doing so he switched on the fluorescent lights in his bathroom exposing himself to small amounts of ultraviolet radiation. (Fluorescent lights absorb UV radiation and transmit visible light along with small amounts of UV light). Unable to dislodge the obstacle from his throat Mr. Golanski seeks help from his neighbor who drives him straight to the ER. To treat him properly the physicians opt for a fluoroscopy to examine Mr. Golanski’s esophageal tract. (Thus he is making use of X-ray imaging to obtain a visual of his internal esophageal structure to check for the obstruction). Once treated and discharged from the hospital Mr. Golanski returns home grateful to have survived this ordeal with minimum damage.
Explanation:
The Electromagnetic Spectrum is the range of frequencies and wavelengths for different light waves. They range with increasing frequency from Radio waves, to Microwaves, to Infrared waves, to Visible waves, to Ultraviolet waves, to Infrared waves, to X-rays, and to Gamma rays. Several of which we use in our daily lives such as Radio waves when operating our television or using our cellular phones. We also use microwaves to heat our food or for communication with satellites. We are also exposed to natural Ultraviolet radiation from the sun; however, we can also get exposed to other forms such as from certain types of light bulbs. We see visible light in the form of all the colors we can detect around us. We make use of x-rays for imaging techniques widely used in medicine for diagnostics, as well as Infrared waves in our home security systems. The electromagnetic spectrum is always used as a part of our everyday life.
Engines can overheat for many reasons. In general, it's because something's wrong within the cooling system and heat isn't able to escape the engine compartment. The source of the issue could include a cooling system leak, faulty radiator fan, broken water pump, or clogged coolant hose.
Hope it helps! Have a nice day or night!
I think the answer will be A
1. If Maggie gives her cat an unfair advantage, her experimental results will be biased.
Explanation:
Maggie using her cat in the experiment to test for intelligence gives the cat an unfair advantage, her experimental results will be biased.
- Due to her emotional attachment with the cat, the experimental results will be skewed to portraying her cat as intelligence.
- This is not a good experiment to carry out.
- Such an experiment should be carried out with an unknown cat.
learn more:
Experiment brainly.com/question/1621519
#learnwithBrainly