Answer:
(a) W=1.20×10⁴J
(b) U= -5.46×10⁴J
(c) Q= -4.26×10⁴J
Explanation:
Given that student does 1.20×10⁴J work
(a) W=1.20×10⁴J
Work done by student,so positive sign
During the process, his internal energy decreases by 5.46×10⁴J.
(b) U= -5.46×10⁴J.
As the Energy decreases therefore negative sign
For (c) Q
We know the formula

To solve this problem it is only necessary to apply the kinematic equations of angular motion description, for this purpose we know by definition that,

Where,
Angular Displacement
Angular Acceleration
Angular velocity
Initial angular displacement
For this case we have neither angular velocity nor initial angular displacement, then

Re-arrange for 

Replacing our values,


Therefore the ANgular acceleration of the mass is 
W-APE. For example, work W done to accelerate a positive charge from rest is positive and results from a loss in PE, or a negative APE. There must be a minus sign in front of APE to make W positive. PE can be found at any point by taking one point as a reference and calculating the work needed to move a charge to the other point.
( The capital A’s in the words are supposed to be triangles ! I also hoped this helped ! Please mark me as brainliest !! )
Initial speed = 56mph
Final speed = 35mph
Time taken = 6.7seconds...
Converting the time to hour.. Divide by 3600..
= 6.7/3600
=0.00186hour..
Acceleration = v-u/t
a = 35-56/0.00186
a = -11283.6mph²
The negative sign shows that it decelerated...
V² = u²+2as
(35)² = (56)² + 2×-11283.6×s
Where s is the distance covered within that time...
1225 = 3136 - 22567.2s
22567.2s = 3136-1225
22567.2s = 1911
S = 1911/22567.2
S = 0.08468miles...
But at the end of the question we were made to understand that 1miles = 5280ft
Therefore 0.08468miles = (0.08468×5280)ft
= 447. 11feets...
Which is approximately 447ft.....
Hope this helped.... ?
Answer:
a)
1.35 kg
b)
2.67 ms⁻¹
Explanation:
a)
= mass of first body = 2.7 kg
= mass of second body = ?
= initial velocity of the first body before collision = 
= initial velocity of the second body before collision = 0 m/s
= final velocity of the first body after collision =
using conservation of momentum equation

Using conservation of kinetic energy

b)
= mass of first body = 2.7 kg
= mass of second body = 1.35 kg
= initial velocity of the first body before collision = 4 ms⁻¹
= initial velocity of the second body before collision = 0 m/s
Speed of the center of mass of two-body system is given as
ms⁻¹