Answer:
A) F_g = 4.05 10⁻⁴⁷ N, B) F_e = 9.2 10⁻⁸N, C)
= 2.3 10³⁹
Explanation:
A) It is asked to find the force of attraction due to the masses of the particles
Let's use the law of universal attraction
F = 
let's calculate
F = 
F_g = 4.05 10⁻⁴⁷ N
B) in this part it is asked to calculate the electric force
Let's use Coulomb's law
F = 
let's calculate
F = 
F_e = 9.2 10⁻⁸N
C) It is asked to find the relationship between these forces

= 2.3 10³⁹
therefore the electric force is much greater than the gravitational force
Answer: Wavelength is the measure of the length of a complete wave cycle. The velocity of a wave is the distance traveled by a point on the wave. In general, for any wave the relation between Velocity and Wavelength is proportionate. It is expressed through the wave velocity formula.
Explanation: For any given wave, the product of wavelength and frequency gives the velocity. It is mathematically given by wave velocity formula written as-
V=f×λ
Where,
V is the velocity of the wave measure using m/s.
f is the frequency of the wave measured using Hz.
λ is the wavelength of the wave measured using m. Velocity and Wavelength Relation
Amplitude, Frequency, wavelength, and velocity are the characteristic of a wave. For a constant frequency, the wavelength is directly proportional to velocity.
Given by:
V∝λ
Example:
For a constant frequency, If the wavelength is doubled. The velocity of the wave will also double.
For a constant frequency, If the wavelength is made four times. The velocity of the wave will also be increased by four times.
Hope you understood the relation between wavelength and velocity of a wave. I truely hope this helps you out tho! Goodluck!
Text book: We can measure the mass of the text book easily by weighing machine, to measure the volume we need to measure the length, width, and height of the text book by the ruler, by multiplying these dimension we can get the volume of the text book, and by dividing the mass of the book with its volume we can get the density of the book.
Milk Container: We can measure the mass of the milk container easily by weighing machine, now (assuming the milk container is cylindrical in shape) we need to measure its height, and and diameter and by the formula (π*r^2*h) we can measure its volume, and and by dividing the mass with its volume we can get the density of the milk container.
Air filled balloon: we can measure the mass of the air filled balloon by weighing it weight machine, we know that the density of air is 28.97 kg/m^3, by dividing the mass of the balloon with the denisty of air we can get the volume of the balloon.
Answer:

Explanation:
Given data:
PERIOD OF MOTION IS T = 25.5 days
orbital speeds = 220 km/s
we know that
acceleration due to centripetal force is
Gravitational force
we know that

solving for





we know that
f =ma

solving for m



maximum static friction acting on the object will be

plug in all values

So here it means that if applied force is less than or equal to 58.8 N then the object will remain stationary as friction can balance the external force upto this limit of external force
So here it is given that applied force is 20 N
so here object will not move due to this force and it will remain at rest always
due to this applied force