1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
faltersainse [42]
3 years ago
5

Expand using the properties and rules for logarithms

Mathematics
1 answer:
malfutka [58]3 years ago
7 0

Consider expression \log_{\frac{1}{2}}\left(\dfrac{3x^2}{2}\right).

1. Use property

\log_a\dfrac{b}{c}=\log_ab-\log_ac.

Then

\log_{\frac{1}{2}}\left(\dfrac{3x^2}{2}\right)=\log_{\frac{1}{2}}3x^2-\log_{\frac{1}{2}}2.

2. Use property

\log_abc=\log_ab+\log_ac.

Then

\log_{\frac{1}{2}}\left(\dfrac{3x^2}{2}\right)=\log_{\frac{1}{2}}3x^2-\log_{\frac{1}{2}}2=\log_{\frac{1}{2}}3+\log_{\frac{1}{2}}x^2-\log_{\frac{1}{2}}2.

3. Use property

\log_ab^k=k\log_ab.

Then

\log_{\frac{1}{2}}\left(\dfrac{3x^2}{2}\right)=\log_{\frac{1}{2}}3+\log_{\frac{1}{2}}x^2-\log_{\frac{1}{2}}2=\log_{\frac{1}{2}}3+2\log_{\frac{1}{2}}x-\log_{\frac{1}{2}}2.

4. Use property

\log_{a^k}b=\dfrac{1}{k}\log_ab.

Then

\log_{\frac{1}{2}}\left(\dfrac{3x^2}{2}\right)=\log_{\frac{1}{2}}3+2\log_{\frac{1}{2}}x-\log_{\frac{1}{2}}2=\log_{\frac{1}{2}}3+2\log_{\frac{1}{2}}x-\log_{2^{-1}}2=\\ \\=\log_{\frac{1}{2}}3+2\log_{\frac{1}{2}}x+\log_22=\log_{\frac{1}{2}}3+2\log_{\frac{1}{2}}x+1.

Answer: correct option is B.

You might be interested in
Solve for x. Round your answer to the nearest tenth if necessary.
eduard

Answer: 15.9

Step-by-step explanation:

7 0
2 years ago
What is the answer to number 23 ?
Vera_Pavlovna [14]

Answer:

C

Step-by-step explanation:

Use πr²

7 0
3 years ago
Read 2 more answers
What is the solution of the system of equations?<br><br> Y=-3x+8<br> Y=-5x+2
olganol [36]

Answer:

x=-3 y=17 (-3;17)

Step-by-step explanation:

-3x+8-y=0

-5x+2-y=0

-2x-6=0

So: x=-3

While....by substituting: y=17

3 0
3 years ago
One more time!
CaHeK987 [17]
Since q(x) is inside p(x), find the x-value that results in q(x) = 1/4

\frac{1}{4} = 5 - x^2\ \Rightarrow\ x^2 = 5 - \frac{1}{4}\ \Rightarrow\ x^2 = \frac{19}{4}\ \Rightarrow \\&#10;x = \frac{\sqrt{19} }{2}

so we conclude that
q(\frac{\sqrt{19} }{2} ) = 1/4

therefore

p(1/4) = p\left( q\left(\frac{ \sqrt{19} }{2} \right)  \right)

plug x=\sqrt{19}/2 into p( q(x) ) to get answer

p(1/4) = p\left( q\left( \frac{ \sqrt{19} }{2} \right) \right)\ \Rightarrow\ \dfrac{4 - \left(  \frac{\sqrt{19} }{2}\right)^2 }{ \left(  \frac{\sqrt{19} }{2}\right)^3 } \Rightarrow \\ \\ \dfrac{4 - \frac{19}{4} }{ \frac{19\sqrt{19} }{8}} \Rightarrow \dfrac{8\left(4 - \frac{19}{4}\right) }{ 8 \cdot \frac{19\sqrt{19} }{8}} \Rightarrow \dfrac{32 - 38}{19\sqrt{19}} \Rightarrow \dfrac{-6}{19\sqrt{19}} \cdot \frac{\sqrt{19}}{\sqrt{19}}\Rightarrow

\dfrac{-6\sqrt{19} }{19 \cdot 19} \\ \\ \Rightarrow  -\dfrac{6\sqrt{19} }{361}

p(1/4) = -\dfrac{6\sqrt{19} }{361}
3 0
3 years ago
I need some help with a math problem
alina1380 [7]

Answer:

3m-25>68

Step-by-step explanation:

Your Welcome

Btw- I didn't write a step by step explanation cause it doesn't need one.

4 0
2 years ago
Other questions:
  • Choose all items which are true.
    8·1 answer
  • What is the area of the grey matting in this 16” by 20” picture frame if the picture to be framed is 11” x 14”?
    5·1 answer
  • Which shows the decimals 34.8, 36.43, and 36.29 in order from greatest to least?
    8·2 answers
  • 4. The use of wind power is growing rapidly. Global wind power generating
    13·1 answer
  • HELP PLEASE IM STUCK!!!!!
    5·1 answer
  • How do I solve this?
    15·2 answers
  • What the coordinates of the midpoint of (2,4) and (3,5) ​
    10·1 answer
  • GIVING BRAINLIEST
    8·1 answer
  • Please help me on this will give you brainliest !
    6·1 answer
  • Choose a specific detail, sentence, or paragraph in the text. Explain how this section supports the main idea of the text.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!