Answer:
░░ ░░░░▄░░░░░░░░░ ▄ ░░░░░░░░▌▒█░░░░░░░░░░░▄▀▒▌ ░░░░░░░░▌▒▒█░░░░░░░░▄▀▒▒▒▐ ░░░░░░░▐▄▀▒▒▀▀▀▀▄▄▄▀▒▒▒▒▒▐ ░░░░░▄▄▀▒░▒▒▒▒▒▒▒▒▒█▒▒▄█▒▐ ░░░▄▀▒▒▒░░░▒▒▒░░░▒▒▒▀██▀▒▌ ░░▐▒▒▒▄▄▒▒▒▒░░░▒▒▒▒▒▒▒▀▄▒▒▌ ░░▌░░▌█▀▒▒▒▒▒▄▀█▄▒▒▒▒▒▒▒█▒▐ ░▐░░░▒▒▒▒▒▒▒▒▌██▀▒▒░░░▒▒▒▀▄▌ ░▌░▒▄██▄▒▒▒▒▒▒▒▒▒░░░░░░▒▒▒▒▌ ▌▒▀▐▄█▄█▌▄░▀▒▒░░░░░░░░░░▒▒▒▐ ▐▒▒▐▀▐▀▒░▄▄▒▄▒▒▒▒▒▒░▒░▒░▒▒▒▒▌ ▐▒▒▒▀▀▄▄▒▒▒▄▒▒▒▒▒▒▒▒░▒░▒░▒▒▐ ░▌▒▒▒▒▒▒▀▀▀▒▒▒▒▒▒░▒░▒░▒░▒▒▒▌ ░▐▒▒▒▒▒▒▒▒▒▒▒▒▒▒░▒░▒░▒▒▄▒▒▐ ░░▀▄▒▒▒▒▒▒▒▒▒▒▒░▒░▒░▒▄▒▒▒▒▌ ░░░░▀▄▒▒▒▒▒▒▒▒▒▒▄▄▄▀▒▒▒▒▄▀ ░░░░░░▀▄▄▄▄▄▄▀▀▀▒▒▒▒▒▄▄—
Step-by-step explanation:
░░ ░░░░▄░░░░░░░░░ ▄ ░░░░░░░░▌▒█░░░░░░░░░░░▄▀▒▌ ░░░░░░░░▌▒▒█░░░░░░░░▄▀▒▒▒▐ ░░░░░░░▐▄▀▒▒▀▀▀▀▄▄▄▀▒▒▒▒▒▐ ░░░░░▄▄▀▒░▒▒▒▒▒▒▒▒▒█▒▒▄█▒▐ ░░░▄▀▒▒▒░░░▒▒▒░░░▒▒▒▀██▀▒▌ ░░▐▒▒▒▄▄▒▒▒▒░░░▒▒▒▒▒▒▒▀▄▒▒▌ ░░▌░░▌█▀▒▒▒▒▒▄▀█▄▒▒▒▒▒▒▒█▒▐ ░▐░░░▒▒▒▒▒▒▒▒▌██▀▒▒░░░▒▒▒▀▄▌ ░▌░▒▄██▄▒▒▒▒▒▒▒▒▒░░░░░░▒▒▒▒▌ ▌▒▀▐▄█▄█▌▄░▀▒▒░░░░░░░░░░▒▒▒▐ ▐▒▒▐▀▐▀▒░▄▄▒▄▒▒▒▒▒▒░▒░▒░▒▒▒▒▌ ▐▒▒▒▀▀▄▄▒▒▒▄▒▒▒▒▒▒▒▒░▒░▒░▒▒▐ ░▌▒▒▒▒▒▒▀▀▀▒▒▒▒▒▒░▒░▒░▒░▒▒▒▌ ░▐▒▒▒▒▒▒▒▒▒▒▒▒▒▒░▒░▒░▒▒▄▒▒▐ ░░▀▄▒▒▒▒▒▒▒▒▒▒▒░▒░▒░▒▄▒▒▒▒▌ ░░░░▀▄▒▒▒▒▒▒▒▒▒▒▄▄▄▀▒▒▒▒▄▀ ░░░░░░▀▄▄▄▄▄▄▀▀▀▒▒▒▒▒▄▄—
Answer:
The probability that X is less than 32 minutes is 0.736.
Step-by-step explanation:
Given : The random variable X is exponentially distributed, where X represents the time it takes for a person to choose a birthday gift. If X has an average value of 24 minutes.
To find : What is the probability that X is less than 32 minutes?
Solution :
If X has an average value of 24 minutes.
i.e. 
The random variable X is exponentially distributed, where X represents the time it takes for a person to choose a birthday gift.
The exponentially function is 
The function form according to question is

The probability that X is less than 32 minutes is



Therefore, the probability that X is less than 32 minutes is 0.736.
( x + 1 )/ 3 = x + 2
Multiply 3 on both sides
x + 1 = 3x + 6
Subtract 6 on both sides
x - 5 = 3x
Subtract x from both sides
-5 = 2x
Divide 2 from both sides
x = -2.5
We know that angle MKJ is comprised of angle MKL and angle LKJ. That means if we add MKL and LKJ, we should get 80 degrees, which is the measure of angle MKJ.

So, we know that our x is 15. That is not enough to tell whether KL is an angle bisector, because we have to evaluate both MKL and LKJ with x=15, so:

So we see that these two angles are actually bisectors, and the third question best describes this phenomenon.