Here I =0.4 amp and t=2hr or 2×60×60 sec
We known I=nQ/t where Q is charge and n is no of charge.
n=It/Q
0.4x(2x60x60)/1.6x10^-19
Answer:
0(zero)
Explanation:
Given that
=0.20kg, radius of the bowl,
and that the mass slides from point A to B.
-Since the normal force is perpendicular to the displacement at every point of the motion,then work done by the normal force is zero.
The boiling point of ethanol is at 78.37°C. So, the energy must include sensible heat to raise 19°C to the boiling point and latent heat to change liquid to gas. The equation would be
Energy = Sensible heat + Latent heat
Energy = mCpΔT + mΔH
For ethanol,
Cp = 46.068 + 102,460T - 139.63T² - 0.030341T³ + 0.0020386T⁴ J/kmol·K
ΔH = 38,560 J/mol
Integrate the Cp expression to determine CpΔT:
CpΔT = ∫₂₉₂³⁵²(46.068 + 102,460T - 139.63T² - 0.030341T³ + 0.0020386T⁴ )dT
The upper limit is (78.37+273) = 352 K, while the lower limit is (19 + 273) = 292.
CpΔT = 2384857192 J/kmol·K
2,000 J = m(2384857192 J/kmol)(1 kmol/1000 mol) + m(38,560 J/mol)
m = 8.253×10⁻⁴ moles of ethanol
Since the molar mass of ethanol is 46.07 g/mol,
Mass = (8.253×10⁻⁴ mol)(46.07 g/mol)
Mass = 0.038 g ethanol
The car's speed was zero at the beginning of the 12 seconds,
and 18 m/s at the end of it. Since the acceleration was 'uniform'
during that time, the car's average speed was (1/2)(0 + 18) = 9 m/s.
12 seconds at an average speed of 9 m/s ==> (12 x 9) = 108 meters .
==========================================
That's the way I like to brain it out. If you prefer to use the formula,
the first problem you run into is: You need to remember the formula !
The formula is D = 1/2 a T²
Distance = (1/2 acceleration) x (time in seconds)²
Acceleration = (change in speed) / (time for the change)
= (18 m/s) / (12 sec)
= 1.5 m/s² .
Distance = (1/2 x 1.5 m/s²) x (12 sec)²
= (0.75 m/s²) x (144 sec²) = 108 meters .
Answer:
27.22 F.
Explanation:
T ( t ) = T₀ + ( T₁ - T₀)
T ( t ) = 41 , T₀ = 0 , T₁ = 140 , t = 15
Put these values in the equation above
41 = ( 140 - 0 ) e^{-15k}
41/140 = e ^{-15k}
(41/140)^{1/3} = e ^{-5k}
Let after 20 minutes temperature becomes T
T = 0 + 140 e^{-k20}
T / 41 = e^{-5k }
= (41/140)^{1/3}
T = 41 X (41/140)^{1/3}
= 27.22 F.