The Law of conservation of mass states that option C: matter is neither created nor destroyed.
<h3>What is the law of conservation of matter?</h3>
Physical and chemical changes can cause matter to transform into different forms, but no matter what happens, matter is always conserved. There is no creation or destruction of matter; the amount of matter is the same before and after the transformation.
The principle of matter conservation. argues that matter cannot be generated or destroyed during a chemical reaction. The same number of atoms exist before and after the alterations even though the matter may shift from one form to another. reactant.
Therefore, According to the principle of mass conservation, neither chemical processes nor physical changes can create or destroy mass in an isolated system. The mass of the products and reactants of a chemical reaction must be equal, in accordance with the law of conservation of mass.
Learn more about matter from
brainly.com/question/3998772
#SPJ1
See full question below
1. Multiple-choice
Q.
Conservation of matter article questions
Law of conservation of mass states that
answer choices
matter is created
matter is destroyed
matter is neither created nor destroyed
matter does not change
Answer : The mass of sample is, 267.5 grams.
Explanation :
Density : It is defined as the mass of a substance contained per unit volume.
Formula used :

Given:
Volume of Pb = 
Density of Pb = 
Now put all the given values in the above formula, we get the mass of Pb.


Therefore, the mass of sample is, 267.5 grams.
I think you forgot to attach a picture
Answer:
Different types of isotopes are used for different materials or objects. For radiometric dating, uranium-235 is considered best for it while carbon-14 is used for dating of rocks. It is also used for dating of wood samples.
Explanation:
Carbon-14 and uranium-235 are used for different materials or objects for measuring the age of these materials. These two isotopes are radioactive in nature which means they emit gamma radiations which allow us to find the age of different objects. Carbon-14 has a low half life so it can be used for those objects which are present before thousands of years while uranium-235 is used for materials which are millions of years old due to high half life.
Answer:
The answer is
<h2>0.784 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula
<h3>

</h3>
From the question
mass of liquid = 9.8 g
volume = 12.5 mL
The density is

We have the final answer as
<h3>0.784 g/mL</h3>
Hope this helps you