A. Protons neutrons and electrons.
Haha those three make up a simple Atom.
<h3>
Answer:</h3>
4.70 × 10²⁴ atoms Ge
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
7.80 mol Ge
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
= 4.69716 × 10²⁴ atoms Ge
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
4.69716 × 10²⁴ atoms Ge ≈ 4.70 × 10²⁴ atoms Ge
Answer: The result is presented in proportion which gives a clearer understanding and accurate result.
Explanation: Percentage change in mass is the proportion of the initial mass of a substance changed after sometime. The results is presented as a percentage making it more accurate and can help to give future reference to weight calculations.
Change is Mass is the mass of a substance left after sometime mostly given in grams. It is not as accurate as percentage change in mass. It is generally better to show results in percentage change in mass as it gives a better understanding of what mass of a substance was lost after a given period or after application of energy like Heat or increased temperature.
Answer:
balanced in ACID not BASE
Cr2O7^2-(aq) +3Hg(l) +14 H^1+ ----> 3Hg^2+ + 2Cr^3+(aq) + 7H2O
Answer
Cr2O7^2-(aq) +3Hg(l) +14 H^1+ ----> 3Hg^2+ + 2Cr^3+(aq) + 7H2O
Explanation:
Cr2O7^2-(aq) + Hg(l) ----> Hg^2+(aqH) + Cr^3+(aq)
add H^1+ (acid) to capture the O and make 7 water molecules
Cr2O7^2-(aq) + Hg(l) + H^1+ ----> Hg^2+(aqH) + Cr^3+(aq) + 7H2O
Cr goes from +6 to +3 by gaining 3 e
Hg goes from 0 to +2 by losing 2 e
we need 3 Hg for every 2 Cr
so
Cr2O7^2-(aq) +3Hg(l) +14 H^1+ ----> 3Hg^2+ + 2Cr^3+(aq) + 7H2O
2 Cr on the right and left
Net 12 positive charges on the right and the left
3 Hg on the right and left
14 H on the right and left
the equation is balanced
we cannot balance the equation in a basic solution with OH^1-
we have plenty of O in the dichromate ion. we need to convert it to water which take free H^1+ from the acid
Answer:
The concentration of H⁺ in a 2.5 M HCl solution is 2.5 M
Explanation:
As HCl is a strong acid and hence a strong electrolyte, it will dissociate as
HCl ⟶ H⁺ + Cl⁻
So, The concentration of H⁺ will be 2.5 M (same as HCl)
Thus, The concentration of H⁺ in a 2.5 M HCl solution is 2.5 M
<u>-TheUnknownScientist</u><u> 72</u>