Answer: True!
Explanation: As electrons that are excited move between energy levels, they emit lots and lots of energy, in fact way more energy than ground state electrons (electrons that move within the same energy level) do, thus, making them more unstable.
We have a solution of NaOH and H₂CO₃
First, NaOH will dissociate into Na⁺ and OH⁻ ions
The Na⁺ ion will substitute one of the Hydrogen atoms on H₂CO₃ to form NaHCO₃
The H⁺ released from the substitution will bond with the OH⁻ ion to form a water molecule
If there were to be another NaOH molecule, a similar substitution will take place, substituting the second hydrogen from H₂CO₃ as well to form Na₂CO₃
I think it’s the third option but I’m not entirely sure
Answer:
Explanation:
H2SO4 let S be x
2(1) + x + 4(-2) = 0
2 + x - 8 = 0
x - 6 = 0
x = 6
For H2S7O8 let S be x
2(1) + 7(x) + 8(-2) = 0
2 + 7x - 16 = 0
7x - 14 = 0
7x = 14
x = 14/7
x = 2
:- H2SO4 as the larger percentage
<span>There
are a number of ways to express concentration of a solution. This includes
molarity. Molarity is expressed as the number of moles of solute per volume of
the solution. So, we calculate as follows:
Molarity = 15.9 g BaCl2 ( 1 mol / 208.23 g ) / .375 L = 0.204 mol / L</span>