Boyle's law p1V1=p2V2
p2=(p1V1)/V2
p2=(205*10^3 Pa * 4*10^-3 m^3 ) / (12*10^-3 m^3)
p2= 68333 Pa
Answer:
The chemist can either:
a. Use a small fractionation apparatus.
b. Add a compound with a much higher boiling point.
Explanation:
Using a smaller fractionation apparatus or Vigreux column will help to minimize loss of the distillate.
If a compound with a higher boiling point is added, the vapors of this liquid will displace the vapors of this small amount of compound with a lower boiling point. This compound with a higher boiling point is known as a Chaser.
The answer is the first one
Answer:
B. Adding more protons to a positively charged body until the number of protons matches the number of electrons.
Explanation:
Answer:
The order will be:
CCH > CHCH₂ > CH₂CH₃> CH₃
Explanation:
According to Cahn-Ingold-Prelog system we rank the groups based on the atomic number of directly attached atom with the chiral carbon.
For example: between C and H, we rank Carbon first.
If the same atoms are attached for different groups then we prioritized based on the second element with highest atomic number.
For example:
Among CH₃ and C₂H₅, the priority will be given to C₂H₅.
If an atom is double or triple bonded to the directly attached atom then each pi bond is considered to be a new atom.
Hence CH=CH₂ means, that there are two carbons attached to CH carbon.
So the order based on above selection rules will be:
CCH > CHCH₂ > CH₂CH₃> CH₃