n = m / M
Where, n is moles of the compound (mol), m is the mass of the compound (g) and M is the molar mass of the compound (g/mol)
Here, the given ethanol mass = 50.0 kg = 50.0 x 10³ g
Molar mass of the ethanol = (12 x 2 + 1x 6 + 1 x 16) g/mol
= 46 g/mol
Hence, moles in 50.0kg of ethanol = 50.0 x 10³ g / 46 g/mol
= 1086.96 mol
Answer:
It is difficult, if not impossible, to heat a solid above its melting point because the heat that ... in a solid are packed in a regular structure that is characteristic of that particular substance.
<h3>#carryONlearning </h3>
Answer:
people are mostly exposed to chemicals through their nose, mouth, eyes, and ears
Explanation:
they are the easiest way for anything, bad or good, to enter the body because people touch their face alot.
This might not answer what you were looking for but the other answer covered it pretty well so I thought I'd give you another angle to the question!
Hope this helps!!
Answer : The equilibrium concentration of
will be, (C) 
Explanation : Given,
Equilibrium constant = 14.5
Concentration of
at equilibrium = 0.15 M
Concentration of
at equilibrium = 0.36 M
The balanced equilibrium reaction is,

The expression of equilibrium constant for the reaction will be:
![K_c=\frac{[CH_3OH]}{[CO][H_2]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCH_3OH%5D%7D%7B%5BCO%5D%5BH_2%5D%5E2%7D)
Now put all the values in this expression, we get:
![14.5=\frac{[CH_3OH]}{(0.15)\times (0.36)^2}](https://tex.z-dn.net/?f=14.5%3D%5Cfrac%7B%5BCH_3OH%5D%7D%7B%280.15%29%5Ctimes%20%280.36%29%5E2%7D)
![[CH_3OH]=2.82\times 10^{-1}M](https://tex.z-dn.net/?f=%5BCH_3OH%5D%3D2.82%5Ctimes%2010%5E%7B-1%7DM)
Therefore, the equilibrium concentration of
will be, (C) 
Answer:
The heat absorbed by the water is 228,948.48 J
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
In this way, between heat and temperature there is a direct proportional relationship (Two magnitudes are directly proportional when there is a constant so that when one of the magnitudes increases, the other also decreases; and the same happens when either of the two decreases .). The constant of proportionality depends on the substance that constitutes the body and its mass, and is the product of the specific heat and the mass of the body. So, the equation that allows to calculate heat exchanges is:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, constituted by a substance of specific heat c and where ΔT is the variation in temperature.
In this case:
- c= 4.184

- m=855 g
- ΔT= Tfinal - Tinitial= 85 °C - 21°C= 64 °C
Replacing:
Q= 4.184
*855 g* 64 C
Solving:
Q= 228,948.48 J
<u><em>The heat absorbed by the water is 228,948.48 J</em></u>