Answer:
So first thing to do in these types of problems is write out your chemical reaction and balance it:
Mg + O2 --> MgO
Then you need to start thinking about moles of Magnesium for moles of Magnesium Oxide. Based on the above equation 1 mole of Magnesium is needed to make one mole of Magnesium Oxide.
To get moles of magnesium you need to take the grams you started with (.418) and convert to moles by dividing by molecular weight of Mg (24.305), this gives you .0172 moles of Mg.
The theoretical yield would be the assumption that 100% of the magnesium will be converted into Magnesium Oxide, so you would get, based on the first equation, .0172 mol of MgO. Multiplying this by the molecular weight of MgO (24.305+16) gives us .693 g of MgO.
The percent yield is what you actually got in the experiment, and for this you subtract off the total mass from the crucible mass, or 27.374 - 26.687, which gives .66 g of MgO obtained.
Percent yield is acutal/theoretical, .66/.693, or 95.24%.
I'll let you do the same for the second trial, and average percent yield is just an average of the two trials percent yield.
Hope this helps.
Answer:Yes,enzymes are catalyzed reactions
Explanation:Enzymes are protein that speeds up chemical reactions. Enzyme catalyzed reaction are divided into two:
Homogeneous reaction
Heterogeneous reaction.
Homogeneous catalysts occupy the same phase as the reaction mixture, while heterogeneous catalysts occupy a different phase.
Acid catalysis, organometallic catalysis, and enzymatic catalysis are examples of homogeneous catalysis.
Vanadium oxide (V2 O5) is a brown/yellow solid on which the oxygen and sulfur dioxide can adsorb in order to react with each other to form sulfuric acid.
Answer:
The short steep ramp would be much harder because you will have to work more against gravity.
Explanation:
Answer:
40 g NaOH
Step-by-step explanation:x
To make 500 mL of a 2 mol·L⁻¹ solution, the technician must measure the correct mass of NaOH.
Step 1. Calculate the <em>moles of NaOH
</em>
c = n/V Multiply both sides by V
n = Vc
c = 2 mol·L⁻¹
V =0.5 L
n = 0.5 × 2
n = 1 mol NaOH
Step 2. Calculate the <em>mass of NaOH
</em>
The molar mass of NaOH is 40.00 g/mol.
m = 1 × 40.00/1
m = <em>40 g NaOH
</em>
The technician must measure <em>40 g of NaOH</em>.