<h2>
Answer:</h2>
Dark matter is a type of matter, whose composition is unknown and which corresponds to 80% of the matter in the universe. Its name refers to the fact it does not emit or interact with any type of electromagnetic radiation, being completely transparent throughout the electromagnetic spectrum.
However, it interacts with the known matter through <u>gravity</u>.
In this sense, it is believed that the Milky Way has 90% dark matter and only 10% ordinary matter (known matter). Because, like gravity, dark matter can not be observed directly, however its existence is inferred through the movement of the stars and the cosmic dust within the galaxy.
2.5 cm 1 meter 1 Year
_______ x ________ x ________ = 0.002 m/month
Year 100 cm 12 mo.s
We use 1/o + 1/i = 1/f where o is the distance of the object, i as distance of the image and f is the focal length.
Substituting, <span>1/ 100 + 1 / i = - 1 /25 </span>
<span>i = - 20 cm </span>
<span>For the case of the problem,</span>
<span>o = (20 + 30) = 50 cm </span>
<span>f = 33.33. </span>Using 1<span> / i + 1 / o = 1/f , </span><span> </span><span>i = 100 cm </span>
<span>M = magnification = - i / o </span>
<span>m1 = -(-20)/100 = 20/100 = 0.2 </span>
<span>m2 = -100/50 = -2 </span>
<span>M = m1*m2 = -2 x 0.2 = -0.4.</span>
Answer:

the mass of body B must be greater than the mass of body A
Explanation:
Newton's second law establishes a linear relationship between the force, the mass of the body and its acceleration
F = m a
a = F / m
Let's analyze this expression tells us that the force is of equal magnitude for the two bodies, but body A goes faster than body B, this implies that it has more relationships
a_A > a_B
Therefore, for this to happen, the mass of body B must be greater than the mass of body A