V(voltage) = I(current)R(resistance)
substitute in the values
V = 15 * 0.10
V = 1.5 volts
It depends on how you want to solve it you can solve it in many different meathods:$
Answer:
Explanation:
The relation between time period of moon in the orbit around a planet can be given by the following relation .
T² = 4 π² R³ / GM
G is gravitational constant , M is mass of the planet , R is radius of the orbit and T is time period of the moon .
Substituting the values in the equation
(.3189 x 24 x 60 x 60 s)² = 4 x 3.14² x ( 9380 x 10³)³ / (6.67 x 10⁻¹¹ x M)
759.167 x 10⁶ = 8.25 x 10²⁰ x 39.43 / (6.67 x 10⁻¹¹ x M )
M = .06424 x 10²⁵
= 6.4 x 10²³ kg .
In a series circuit the total current is the same throughout resistors and so:

The voltage is distributed throughout the resistors and so:

and the total resistance can be calculated by adding up the resistors resistance:

First thing is to calculate the total resistance and so:

And by Omh's law V=IR we have:

And so the total current of the circuit is 1.2 amps i.e. 1.2 A.
Answer:
mass of the neutron star =3.45185×10^26 Kg
Explanation:
When the neutron star rotates rapidly, a material on its surface to remain in place, the magnitude of the gravitational acceleration on the central material must be equal to magnitude of the centripetal acc. of the rotating star.
That is

M_ns = mass odf the netron star.
G= gravitational constant = 6.67×10^{-11}
R= radius of the star = 18×10^3 m
ω = 10 rev/sec = 20π rads/sec
therefore,

= 3.45185... E26 Kg
= 3.45185×10^26 Kg