Answer:
0.01 psi
Explanation:
If you look at the data points plotted on the graph, the slope of the line touches 0.1 for the y-axis when it is at 20 for the x-axis.
Answer:
A is denser than B as it's volume for the same mass is smaller.
Explanation:
Hello.
In this case, we first need to take into account that the density of each metal A and B is computed by dividing the mass over the volume of each metal which is actually computed by substracting the volume of water from the volume of the water and the solid:

Next, we compute the densities as shown below:

In such a way, A is denser is B as it's volume for the same mass is smaller.
Best regards.
Answer:
The answer to your questions is Cm = 25.5 J/mol°C
Explanation:
Data
Heat capacity = 0.390 J/g°C
Molar heat capacity = ?
Process
1.- Look for the atomic number of Zinc
Z = 65.4 g/mol
2.- Convert heat capacity to molar heat capacity
(0.390 J/g°C)(65.4 g/mol)
- Simplify and result
Cm = 25.5 J/mol°C
Answer:
The chemical equation by putting, a 2 on C₅H₁₂O, 15 on O₂, 10 on CO₂ , and 12 on H₂O in the equation;
2C₅H₁₂O + 15O₂ → 10CO₂ + 12H₂O
Explanation:
- Chemical equations are balanced by putting coefficients on the reactants and products to ensure the total number of atoms on the left side equal to those on the right side.
- Balancing chemical equations is done to make chemical equations obey the law of conservation of mass.
- According to the law of conservation of mass, the mass of the reactants should always be equal to the mass of products.
- This is done by balancing chemical equations to ensure the total number of atoms on the left side is equal to that on the right side.
- Therefore, the balanced equation is;
2C₅H₁₂O + 15O₂ → 10CO₂ + 12H₂O
Answer:Amplitude:the maximum displacement or distance moved by a point on a vibrating body or wave measured from its equilibrium position. It is equal to one-half the length of the vibration path.Wave speed:Wave speed is the distance a wave travels in a given amount of time, such as the number of meters it travels per second. Wave speed is related to wavelength and wave frequency by the equation: Speed = Wavelength x Frequency. This equation can be used to calculate wave speed when wavelength and frequency are known.Wavelength:Wavelength is the distance between identical points (adjacent crests) in the adjacent cycles of a waveform signal propagated in space or along a wire. In wireless systems, this length is usually specified in meters (m), centimeters (cm) or millimeters (mm).Frequency:frequency, in physics, the number of waves that pass a fixed point in unit time; also, the number of cycles or vibrations undergone during one unit of time by a body in periodic motion.
Explanation: