Answer:
1) They are not inverses
2) They are inverses
Step-by-step explanation:
We need to find the composition function between these functions to verify if these functions are inverses. If f[g(x)] and g[f(x)] are equal to x they are inverses.
<u>1)</u>
<u>Let's find f[g(x)] and simplify.</u>
![f[g(x)]=\frac{1}{2}g(x)+\frac{3}{2}](https://tex.z-dn.net/?f=f%5Bg%28x%29%5D%3D%5Cfrac%7B1%7D%7B2%7Dg%28x%29%2B%5Cfrac%7B3%7D%7B2%7D)
As f[g(x)] is not equal to x, these functions are not inverses.
2)
<u>Let's find f[g(x)] and simplify.</u>
![f[g(n)]=\frac{-16+(4n+16)}{4}](https://tex.z-dn.net/?f=f%5Bg%28n%29%5D%3D%5Cfrac%7B-16%2B%284n%2B16%29%7D%7B4%7D)
![f[g(n)]=\frac{-16+4n+16}{4}](https://tex.z-dn.net/?f=f%5Bg%28n%29%5D%3D%5Cfrac%7B-16%2B4n%2B16%7D%7B4%7D)
![f[g(n)]=\frac{4n}{4}](https://tex.z-dn.net/?f=f%5Bg%28n%29%5D%3D%5Cfrac%7B4n%7D%7B4%7D)
![f[g(n)]=n](https://tex.z-dn.net/?f=f%5Bg%28n%29%5D%3Dn)
Now, we need to find the other composition function g[f(x)]
<u>Let's find g[f(x)] and simplify.</u>
![g[f(x)]=4(\frac{-16+n}{4})+16](https://tex.z-dn.net/?f=g%5Bf%28x%29%5D%3D4%28%5Cfrac%7B-16%2Bn%7D%7B4%7D%29%2B16)
![g[f(x)]=-16+n+16](https://tex.z-dn.net/?f=g%5Bf%28x%29%5D%3D-16%2Bn%2B16)
![g[f(x)]=n](https://tex.z-dn.net/?f=g%5Bf%28x%29%5D%3Dn)
Therefore, as f[g(n)] = g[f(n)] = n, both functions are inverses.
I hope it helps you!
Answer:
3
Step-by-step explanation:
3 is a prime number so other than 3x1 3 does not have any other factors
Answer:
Option B 13 units is correct.
Step-by-step explanation:
The formula used to find distance between 2 points is:
x₁ = 12 x₂ = 0 y₁= 9 and y₂=4
Putting values in the formula:

So, Option B 13 units is correct.