1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bess [88]
2 years ago
12

if danny jogged 8x-21 miles and julie jogged 24x-63 mike’s, how many times longer was julie’s travel distance than danny’s?

Mathematics
2 answers:
Bas_tet [7]2 years ago
6 0
Julie traveled 3 times more miles than Danny.
This is because 24x is 3 times more than 8x and -63 is 3 times more than -21.
navik [9.2K]2 years ago
5 0
I believe it is 3x 42
You might be interested in
F=-GMn/D^2 solve for M
notka56 [123]
M=FD^2/(-Gn) 
here is the solution 

5 0
3 years ago
Suppose F⃗ (x,y)=(x+3)i⃗ +(6y+3)j⃗ . Use the fundamental theorem of line integrals to calculate the following.
Scorpion4ik [409]

In order to use the fundamental theorem of line integrals, you need to find a scalar potential function - that is, a scalar function <em>f(x, y)</em> for which

grad <em>f(x, y)</em> = <em>F</em><em>(x, y)</em>

This amounts to solving for <em>f</em> such that

∂<em>f</em>/d<em>x</em> = <em>x</em> + 3

∂<em>f</em>/∂<em>y</em> = 6<em>y</em> + 3

Integrating both sides of the first equation with respect to <em>x</em> gives

<em>f</em> = 1/2 <em>x</em> ^2 + 3<em>x</em> + <em>g(y)</em>

Differentiating with respect to <em>y</em> gives

∂<em>f</em>/∂<em>y</em> = d<em>g</em>/d<em>y</em> = 6<em>y</em> + 3

Solving for <em>g</em> gives

<em>g</em> = ∫ (6<em>y</em> + 3) d<em>y</em> = 3<em>y</em> ^2 + 3<em>y</em> + <em>C</em>

and hence

<em>f(x, y)</em> = 1/2 <em>x</em> ^2 + 3<em>x</em> + 3<em>y</em> ^2 + 3<em>y</em> + <em>C</em>

<em />

(a) By the fundamental theorem, the integral of <em>F</em> along any path starting at the point <em>P</em> (1, 0) and ending at <em>Q</em> (3, 3) is

∫ <em>F</em><em>(x, y)</em> • d<em>r</em> = <em>f</em> (3, 3) - <em>f</em> (1, 0) = 99/2 - 7/2 = 46

(b) Now we're talking about a closed path, so the integral is simply 0. We can verify this by checking the integral over the origin-containing paths:

• From the origin to <em>P</em> :

∫ <em>F</em><em>(x, y)</em> • d<em>r</em> = <em>f</em> (1, 0) - <em>f</em> (0, 0) = 7/2 - 0 = 7/2

• From <em>Q</em> back to the origin:

∫ <em>F</em><em>(x, y)</em> • d<em>r</em> = <em>f</em> (0, 0) - <em>f</em> (3, 3) = 0 - 99/2 = -99/2

Then the total integral is 7/2 + 46 - 99/2 = 0, as expected.

6 0
2 years ago
80 POINTS MATH
notka56 [123]

hey mate..

the position at which the tips of the scissors will be FARTHER APART is at position B.

as the angle made by the scissors at the centre is greater in position B.



3 0
2 years ago
Read 2 more answers
(5) Find the Laplace transform of the following time functions: (a) f(t) = 20.5 + 10t + t 2 + δ(t), where δ(t) is the unit impul
Aloiza [94]

Answer

(a) F(s) = \frac{20.5}{s} - \frac{10}{s^2} - \frac{2}{s^3}

(b) F(s) = \frac{-1}{s + 1} - \frac{4}{s + 4} - \frac{4}{9(s + 1)^2}

Step-by-step explanation:

(a) f(t) = 20.5 + 10t + t^2 + δ(t)

where δ(t) = unit impulse function

The Laplace transform of function f(t) is given as:

F(s) = \int\limits^a_0 f(s)e^{-st} \, dt

where a = ∞

=>  F(s) = \int\limits^a_0 {(20.5 + 10t + t^2 + d(t))e^{-st} \, dt

where d(t) = δ(t)

=> F(s) = \int\limits^a_0 {(20.5e^{-st} + 10te^{-st} + t^2e^{-st} + d(t)e^{-st}) \, dt

Integrating, we have:

=> F(s) = (20.5\frac{e^{-st}}{s} - 10\frac{(t + 1)e^{-st}}{s^2} - \frac{(st(st + 2) + 2)e^{-st}}{s^3}  )\left \{ {{a} \atop {0}} \right.

Inputting the boundary conditions t = a = ∞, t = 0:

F(s) = \frac{20.5}{s} - \frac{10}{s^2} - \frac{2}{s^3}

(b) f(t) = e^{-t} + 4e^{-4t} + te^{-3t}

The Laplace transform of function f(t) is given as:

F(s) = \int\limits^a_0 (e^{-t} + 4e^{-4t} + te^{-3t} )e^{-st} \, dt

F(s) = \int\limits^a_0 (e^{-t}e^{-st} + 4e^{-4t}e^{-st} + te^{-3t}e^{-st} ) \, dt

F(s) = \int\limits^a_0 (e^{-t(1 + s)} + 4e^{-t(4 + s)} + te^{-t(3 + s)} ) \, dt

Integrating, we have:

F(s) = [\frac{-e^{-(s + 1)t}} {s + 1} - \frac{4e^{-(s + 4)}}{s + 4} - \frac{(3(s + 1)t + 1)e^{-3(s + 1)t})}{9(s + 1)^2}] \left \{ {{a} \atop {0}} \right.

Inputting the boundary condition, t = a = ∞, t = 0:

F(s) = \frac{-1}{s + 1} - \frac{4}{s + 4} - \frac{4}{9(s + 1)^2}

3 0
3 years ago
(Trigonometry) Fill in the blank. Question in the picture. Please help
lisov135 [29]
4 feet? 20/5=4? Not too sure
8 0
3 years ago
Read 2 more answers
Other questions:
  • The table shows the last holiday destination of 60 people.
    12·1 answer
  • The length of cherries vegetable garden is 6.56 meters. The width of the garden is 6.6 meters. What is the answer
    9·1 answer
  • Check graphically whether the pair of equations 2x-y=1 and x+2y=3 is consistent if so solve them graphically
    15·1 answer
  • Please hurry i need this fast
    6·1 answer
  • The measure of the exterior angle of the triangle is
    11·1 answer
  • What's is 1 + 1 please help idk this
    9·1 answer
  • If z = 2, find the value of: a. 6z2–2z+5<br> b. 64–5z
    9·1 answer
  • Please help me please please ASAP ASAP please ASAP
    8·1 answer
  • what are the key features of the graph of a trigonometric function? How do you find them from a graph or an equation?
    10·1 answer
  • What is lim x-&gt;3 x^2+x-12/x^2-3x<br><br> 0<br> 7/3<br> 4<br> DNE
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!