There are several information's already given in the question. Based on those information's, the answer can be easily deduced.
Amount of gasoline required by Harry's car to travel 25 miles = 1 gallon
Then
amount of gasoline required
by Harry's car to travel 15000 miles = 15000/25
= 600 gallons
So
Amount of CO2 released by burning 1 gallon of gasoline = 20 pounds
Then
Amount of CO2 released
by burning 600 gallon of gasoline = 600 * 20
= 12000 pounds
From the above deduction, it can be concluded that the amount of CO2 that will be added by Harry's car to the atmosphere is 12000 pounds.
You have molarity and you have volume. Use the formula :
Molarity(M)= Moles(N)/Liter(L) to get the solution.
450 ml= .450 L
.250 = N/.450
N=.1125 moles of NaOH.
And since you know the moles, use the molar mass to figure out the grams.
<span> (40g/mol NaOH) x (.1125 mol) =
4.5g of NaOH.
</span>
Hope it helps. Good luck on chemistry.
A mixture consisting of only of lithium chloride, lithium carbonate, and lithium nitrate was analyzed by the help of concentric hydrochloric acid.
<h3>What is concentric hydrochloric acid?</h3>
The concentric hydrochloric acid is used for the analysis of organic and inorganic mixture like lithium chloride, lithium carbonate, and lithium nitrate it releases fumes and cannot be touched with normal hands.
Always use a dropper to use it and for the chemical analysis.
Therefore, mixture consisting of only of lithium chloride, lithium carbonate, and lithium nitrate was analyzed by the help of concentric hydrochloric acid.
Learn more about concentric hydrochloric acid, here,
brainly.com/question/24586675
#SPJ1
Answer:
- <u>2.59 × 10⁻⁷ m = 259 nm</u>
Explanation:
You need to calculate the wavelength of a photon with an energy equal to 463 kJ/mol, which is the energy to break an oxygen-hydrogen atom.
The energy of a photon and its wavelength are related by the Planck - Einstein equation:
Where:
- h = Planck constant (6.626 × 10⁻³⁴ J . s) and
- ν = frequency of the photon.
And:
Where:
- c = speed of light (3.00 × 10⁸ m/s in vacuum)
- λ = wavelength of the photon
Thus, you can derive:
Solve for λ:
Before substituting the values, convert the energy, 463 kJ/ mol, to J/bond
- 463 kJ/ mol × 1,000 J/kJ × 1 mol / 6.022 × 10 ²³ atom × 1 bond / atom
= 7.69×10²³ J / bond
Substitute the values and use the energy of one bond:
- λ = 6.626 × 10⁻³⁴ J . s × 3.00 × 10⁸ m/s / 7.69×10²³ J = 2.59 × 10⁻⁷ m
The wavelength of light is usually shown in nanometers:
- 2.59 × 10⁻⁷ m × 10⁹ nm / m = 259 nm ← answer
<h3>Answer:</h3>
2.55 × 10²² Na Atoms
<h3>Solution:</h3>
Data Given:
M.Mass of Na = 23 g.mol⁻¹
Mass of Na = 973 mg = 0.973 g
# of Na Atoms = ??
Step 1: Calculate Moles of Na as:
Moles = Mass ÷ M.Mass
Moles = 0.973 g ÷ 23 g.mol⁻¹
Moles = 0.0423 mol
Step 2: Calculate No, of Na Atoms as:
As 1 mole of sodium atoms counts 6.022 × 10²³ and equals exactly to the mass of 23 g. So, we can write,
Moles = No. of Na Atoms ÷ 6.022 × 10²³ Na Atoms.mol⁻¹
Solving for No. of Na Atoms,
No. of Na Atoms = Moles × 6.022 × 10²³ Na Atoms.mol⁻¹
No. of Na Atoms = 0.0423 mol × 6.022 × 10²³ Na Atoms.mol⁻¹
No. of Na Atoms = 2.55 × 10²² Na Atoms
<h3>Conclusion: </h3>
2.55 × 10²² sodium atoms are required to reach a total mass of 973 mg in a substance of pure sodium.