Answer:
7.00 m
Explanation:
Given:
v₀ = 2.00 m/s
v = 5.00 m/s
a = 1.50 m/s²
Find: Δx
v² = v₀² + 2aΔx
(5.00 m/s)² = (2.00 m/s)² + 2(1.50 m/s²)Δx
Δx = 7.00 m
Answer:

The Magnitude of electric field is in the upward direction as shown directly towards the charge
.
Explanation:
Given:
- side of a square,

- charge on one corner of the square,

- charge on the remaining 3 corners of the square,

<u>Distance of the center from each corners</u>


∴Distance of center from corners, 
Now, electric field due to charges is given as:

<u>For charge
we have the field lines emerging out of the charge since it is positively charged:</u>

<u>Force by each of the charges at the remaining corners:</u>

<u> Now, net electric field in the vertical direction:</u>


<u>Now, net electric field in the horizontal direction:</u>


So the Magnitude of electric field is in the upward direction as shown directly towards the charge
.
Complete Question:
The momentum of an object is determined to be 7.2 × 10-3 kg⋅m/s. Express this quantity as provided or use any equivalent unit. (Note: 1 kg = 1000 g).
Answer:
7.2 gm/s.
Explanation:
Momentum can be defined as the multiplication (product) of the mass possessed by an object and its velocity. Momentum is considered to be a vector quantity because it has both magnitude and direction.
Mathematically, momentum is given by the formula;
Given the following data;
Momentum = 7.2 * 10^-3 kgm/s
1 kg = 1000 g
Substituting the unit in kilograms with grams, we have;
Momentum = 7.2 * 10^-3 * 1000 gm/s
<em>Momentum = 7.2 gm/s. </em>