Answer: you subtract the number of protons from the mass number, on the periodic table your atomic number is your protons and your atomic mass is the mass number
Explanation:
Answer:

Explanation:
The horizontal distance covered by the ball in the falling is only determined by its horizontal motion - in fact, it is given by

where
is the horizontal velocity
t is the time of flight
The time of flight, instead, is only determined by the vertical motion of the ball: however, in this problem the vertical velocity is not changed (it is zero in both cases), so the time of flight remains the same.
In the first situation, the horizontal distance covered is

in the second case, the horizontal velocity is increased to

And so the new distance travelled will be

So, the distance increases linearly with the horizontal velocity.
The direction in which an electrical signal is carried in a typical multi-polar neuron is:
Dendrites, cell body, axon
Specialized projection of neurons are dendrites and axon. The central part of neuron is cell body. So, the electrical signal is carried in a direction that first dendrites carried the signal then it goes towards cell body and then to axon.
Answer:
the coefficient of volume expansion of the glass is 
Explanation:
Given that:
Initial volume of the glass flask = 1000 cm³ = 10⁻³ m³
temperature of the glass flask and mercury= 1.00° C
After heat is applied ; the final temperature = 52.00° C
Temperature change ΔT = 52.00° C - 1.00° C = 51.00° C
Volume of the mercury overflow = 8.50 cm^3 = 8.50 × 10⁻⁶ m³
the coefficient of volume expansion of mercury is 1.80 × 10⁻⁴ / K
The increase in the volume of the mercury = 10⁻³ m³ × 51.00 × 1.80 × 10⁻⁴
The increase in the volume of the mercury = 
Increase in volume of the glass = 10⁻³ × 51.00 × 
Now; the mercury overflow = Increase in volume of the mercury - increase in the volume of the flask
the mercury overflow = 






Thus; the coefficient of volume expansion of the glass is 
Answer:
D. A lower Voltage into a higher