Explanation:
According to Rydberg's formula, the wavelength of the balmer series is given by:

R is Rydberg constant for an especific hydrogen-like atom, we may calculate R for hydrogen and deuterium atoms from:

Here,
is the "general" Rydberg constant,
is electron's mass and M is the mass of the atom nucleus
For hydrogen, we have,
:

Now, we calculate the wavelength for hydrogen:
![\frac{1}{\lambda}=R_H(\frac{1}{2^2}-\frac{1}{3^2})\\\lambda=[R_H(\frac{1}{2^2}-\frac{1}{3^2})]^{-1}\\\lambda=[1.0967*10^7m^{-1}(\frac{1}{2^2}-\frac{1}{3^2})]^{-1}\\\lambda=6.5646*10^{-7}m=656.46nm](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5Clambda%7D%3DR_H%28%5Cfrac%7B1%7D%7B2%5E2%7D-%5Cfrac%7B1%7D%7B3%5E2%7D%29%5C%5C%5Clambda%3D%5BR_H%28%5Cfrac%7B1%7D%7B2%5E2%7D-%5Cfrac%7B1%7D%7B3%5E2%7D%29%5D%5E%7B-1%7D%5C%5C%5Clambda%3D%5B1.0967%2A10%5E7m%5E%7B-1%7D%28%5Cfrac%7B1%7D%7B2%5E2%7D-%5Cfrac%7B1%7D%7B3%5E2%7D%29%5D%5E%7B-1%7D%5C%5C%5Clambda%3D6.5646%2A10%5E%7B-7%7Dm%3D656.46nm)
For deuterium, we have
:
![R_D=\frac{1.09737*10^7m^{-1}}{(1+\frac{9.11*10^{-31}kg}{2*1.67*10^{-27}kg})}\\R_D=1.09707*10^7m^{-1}\\\\\lambda=[R_D(\frac{1}{2^2}-\frac{1}{3^2})]^{-1}\\\lambda=[1.09707*10^7m^{-1}(\frac{1}{2^2}-\frac{1}{3^2})]^{-1}\\\lambda=6.5629*10^{-7}=656.29nm](https://tex.z-dn.net/?f=R_D%3D%5Cfrac%7B1.09737%2A10%5E7m%5E%7B-1%7D%7D%7B%281%2B%5Cfrac%7B9.11%2A10%5E%7B-31%7Dkg%7D%7B2%2A1.67%2A10%5E%7B-27%7Dkg%7D%29%7D%5C%5CR_D%3D1.09707%2A10%5E7m%5E%7B-1%7D%5C%5C%5C%5C%5Clambda%3D%5BR_D%28%5Cfrac%7B1%7D%7B2%5E2%7D-%5Cfrac%7B1%7D%7B3%5E2%7D%29%5D%5E%7B-1%7D%5C%5C%5Clambda%3D%5B1.09707%2A10%5E7m%5E%7B-1%7D%28%5Cfrac%7B1%7D%7B2%5E2%7D-%5Cfrac%7B1%7D%7B3%5E2%7D%29%5D%5E%7B-1%7D%5C%5C%5Clambda%3D6.5629%2A10%5E%7B-7%7D%3D656.29nm)
<h2>
Answer:</h2>
C.
<h2>
Explanation:</h2>
This is what we call a permanent magnet. By the way, the magnetic phenomena were first observed about 2500 years ago near the ancient city of Magnesia, what is today Manisa, located in western Turkey, when people saw fragments of magnetized iron. So <em>what happens if you cut a magnet in half? </em>Well, a magnet has two ends, the first one is called a north pole or N pole while the other end is a south pole or S pole, so if you break a bar magnet, each piece has a north and south pole, no matter the size of each new bar although the smaller the piece, the weaker its magnetism. This is true because unlike electric charges, you always find magnetic poles in pairs, that is, ¡they can't be isolated! The option is C. because in the great bar the north pole is to the left while the south pole is to right.
The strength of a field force changes with distance from the sourceof the field-stronger closer to the source, weaker farther away from the source. The source can be either a mass, a charged particle, or a magnetic pole.
Answer:
Explanation:
Given that,
First Capacitor is 10 µF
C_1 = 10 µF
Potential difference is
V_1 = 10 V.
The charge on the plate is
q_1 = C_1 × V_1 = 10 × 10^-6 × 10 = 100µC
q_1 = 100 µC
A second capacitor is 5 µF
C_2 = 5 µF
Potential difference is
V_2 = 5V.
Then, the charge on the capacitor 2 is.
q_2 = C_2 × V_2
q_2 = 5µF × 5 = 25 µC
Then, the average capacitance is
q = (q_1 + q_2) / 2
q = (25 + 100) / 2
q = 62.5µC
B. The two capacitor are connected together, then the equivalent capacitance is
Ceq = C_1 + C_2.
Ceq = 10 µF + 5 µF.
Ceq = 15 µF.
The average voltage is
V = (V_1 + V_2) / 2
V = (10 + 5)/2
V = 15 / 2 = 7.5V
Energy dissipated is
U = ½Ceq•V²
U = ½ × 15 × 10^-6 × 7.5²
U = 4.22 × 10^-4 J
U = 422 × 10^-6
U = 422 µJ
We can find for the country by using a map with angle coordinates.
Based on the map that I found online, the country which is located at around 40
degrees north and 100 degrees east is no other than:
<span>China</span>