Hard surfaces reflect sound back into the room, while carpets help to absorb the sound so it reflects less
Answer
The intensity of a sound wave depends on the pressure of the wave,density of the medium and speed of sound in the medium. Higher density and higher sound speed both give a lower intensity. and may be it is because that sound wave is more characterize by wavelength than frequency..explanation
Explanation:
As decibel levels get higher, sound waves have greater intensity and sounds are louder. For every 10-decibel increase in the intensity of sound, loudness is 10 times greater. Intensity of sound results from two factors: the amplitude of the sound waves and how far they have traveled from the source of the sound.
Answer:
Lightning is a process that occurs when the positive and negative charges present in the cloud build up in such a manner that a spark of lightning occurs between the two of them in the cloud. ... A metal rod placed on top of a building to protect it from a lightning strike is known as a lightning conductor.
Explanation:
Answer:
Explanation:
given,
tuning fork vibration = 508 Hz
accelerates = 9.80 m/s²
speed of sound = 343 m/s
observed frequency = 490 Hz
distance the tunning fork has fallen
=8.1 m
now, time required for the observed will be
now, for the distance calculation
=0.293 m
total distance
= 8.1 + 0.293 = 8.392 m
Answer:
220 A
Explanation:
The magnetic force on the floating rod due to the rod held close to the ground is F = BI₁L where B = magnetic field due to rod held close the ground = μ₀I₂/2πd where μ₀ = permeability of free space = 4π × 10⁻⁷ H/m, I₂ = current in rod close to ground and d = distance between both rods = 11 mm = 0.011 m. Also, I₁ = current in floating rod and L = length of rod = 1.1 m.
So, F = BI₁L
F = (μ₀I₂/2πd)I₁L
F = μ₀I₁I₂L/2πd
Given that the current in the rods are the same, I₁ = I₂ = I
So,
F = μ₀I²L/2πd
Now, the magnetic force on the floating rod equals its weight , W = mg where m = mass of rod = 0.10kg and g = acceleration due to gravity = 9.8 m/s²
So, F = W
μ₀I²L/2πd = mg
making I subject of the formula, we have
I² = 2πdmg/μ₀L
I = √(2πdmg/μ₀L)
substituting the values of the variables into the equation, we have
I = √(2π × 0.011 m × 0.1 kg × 9.8 m/s²/[4π × 10⁻⁷ H/m × 1.1 m])
I = √(0.01078 kgm²/s²/[2 × 10⁻⁷ H/m × 1.1 m])
I = √(0.01078 kgm²/s²/[2.2 × 10⁻⁷ H])
I = √(0.0049 × 10⁷kgm²/s²H)
I = √(0.049 × 10⁶kgm²/s²H)
I = 0.22 × 10³ A
I = 220 A