Answer:
the smallest radius of the circular path is 8.1 km
Explanation:
The computation of the smallest radius of the circular path is given below:
Given that
V = Velocity = 201 m/s
a_c = acceleration = 5 m/s^2
radius = ?
As we know that
a_c = V^2 ÷ r
5 = 201^2 ÷ r
r = 201^2 ÷ 5
= 8,080.2 g
= 8.1 km
Hence, the smallest radius of the circular path is 8.1 km
<h2>Answer:</h2>
<u>Distance covered is 6.9 meters</u>
<h2>Explanation:</h2>
Data given:
Work Done = 345 kJ = 345000 J
Force = 5 x 10 ^ 4 = 50000 N
Distance = ?
Solution:
As we know that
Work Done = Force applied x Distance covered
By arranging the equation we get
Work / Force = Distance covered
By putting the values
345000 / 50000 = 6.9
So distance covered is 6.9 meters
No, you are at a constant rate which means that you are always at 40mph
If we have to figure air resistance into it, then we don't have enough information to find an answer.
If the air around it is going to have an effect on how it falls, then it'll depend on the thickness of the book, the shape of the book, whether it's a hard-cover or soft-cover, how far the covers stick out past the pages, how smooth or rough the covers are, how bumpy the binding it. and what position you hold it in before you let it go.
(THAT's why we always ignore air resistance, especially when the question is actually about gravity anyway.)
Complete Question
The complete question is shown on the first uploaded image
Answer:
The cross-sectional area is 
Explanation:
The free body diagram of the link is shown on the second uploaded image
From the question we are told that
Ultimate normal stress in the link 
Factor safety 
From our free diagram we can see that the moment about B is 0 Mathematically

But 
Hence 
Making
the subject

At equilibrium summation of all force is 0 mathematically
This means

i.e 


The factor of safety is mathematically
Factor of safety 
Where
is the normal stress
is the allowable stress this mathematically given as


Making A the subject

