Emf e = 11
r 1 = 3.0
r 2 = 3.0
r 3 = ?
The two in parallel are equivalent to 3 • 3/6 = 1.5 Ω
To have 2.4 volts across them, the current is I = 2.4/1.5 = 1.6 amps. and the unknown R = (11–2.4) / 1.6 = 5.375 Ω or 5.4 Ω
Answer:
Plan B.
Because flexibility is best improved by stretching.
Explanation:
Improving and increasing flexibility is done by having stretching sessions daily which maintains and widens the range of motion in the joints and stretches muscles.
Hi there!
Acceleration:
a = Δv / Δt, so:
a = 20/9 ≈ 2.22 m/s²
Displacement:
We can use the equation Δd = v₀t + 1/2at² to solve. (Initial velocity is 0).
Δd = 1/2at²
Plug in the acceleration and time:
Δd = 1/2(2.22)(9)² ≈ 89.91 m
From Ohm's law: R = V / I
Resistance = (voltage) / (current)
The first paragraph TELLS you that the current is always 0.5 A, and the table tells you the voltage across each piece of wire.
Again . . . <em>R = V / I</em>
Using the cosine rule (a^2 = b^2 + c^2 - 2bc cos A), we can work out the displacement:
Displacement = a
b = 30
c = 50
A = 180 - 35 = 145 degrees.
a^2= 900 + 2500 -1500*-0.81915...
= 3400 + 1228.728...
= 4628.72...
a = 68.034...
= 68.0m (to 3s.f.).
To work out the angle from starting place, use another configuration of the cosine rule:

:
cos (C)=

= 3028.7.../4080
= 0.7423...
C = 42.069... degrees
= 042 bearing