Answer:
tan²x + 1 = sec²x is identity
Step-by-step explanation:
* Lets explain how to find this identity
∵ sin²x + cos²x = 1 ⇒ identity
- Divide both sides by cos²x
∵ sin x ÷ cos x = tan x
∴ sin²x ÷ cos²x = tan²x
- Lets find the second term
∵ cos²x ÷ cos²x = 1
- Remember that the inverse of cos x is sec x
∵ sec x = 1/cos x
∴ sec²x = 1/cos²x
- Lets write the equation
∴ tan²x + 1 = 1/cos²x
∵ 1/cos²x = sec²x
∴ than²x + 1 = sec²x
- So we use the first identity sin²x + cos²x = 1 to prove that
tan²x + 1 = sec²x
∴ tan²x + 1 = sec²x is identity
Answer:
The diameter is any straight line that passes through the center of the circle, which endpoints can lie on. The radius is half the diameter. They help us find the circumference of a circle
The area of a square is
s • s
We can also write this as
s^2
So, for any side length “s”, we can make a function, A(s), such that
A(s) = s^2
Now that we have a quadratic equation for the area of a square, let’s go ahead and solve for the side lengths of a square with a given area. In this case, 225 in^2
225 = s^2
Therefore,
s = sqrt(225)
s = 15
So, the dimensions are 15 x 15 in
Thanks for the helpful answers