Answer:
The answer is 82,472
Step-by-step explanation:
The nearest estimate of 208.4=208.
The nearest estimate of 396.51 is 396.5
So the product is 82,472
Answer:
i think that this is the answer
Answer:
10 > v (if you don't trust me, check it yourself. Subsitute v for 10 in the first equation.
Step-by-step explanation:
1) 7 > v - 3
2) add 3 to both sides
3) so 7 plus 3 equals 10
So you basically do this
7 > v - 3 (ad 3 to both sides)
You get 10 > v (which is as simplified as possible)
Hope this helps! :)
Consider the equation:

Subtracting '4' from both the sides of the equation, we get as


Squaring on both the sides of the equation, we get


Subtracting '2' from both the sides of the equation, we get

x=14
Since, An extraneous solution is a solution that arises from the solving process that is not really a solution at all. But, in this equation x=14 is the solution of the given equation.
Hence, it is not an extraneous solution.
Step-by-step explanation:
<em>giv</em><em>en</em><em> </em>
<em>
</em>
<em>in</em><em> </em><em>or</em><em>der</em><em> </em><em>to</em><em> </em><em>mak</em><em>e</em><em> </em><em>multipli</em><em>cation</em><em> </em><em>easi</em><em>er</em><em> </em><em>we</em><em> </em><em>ne</em><em>ed</em><em> </em><em>to</em><em> </em><em>cha</em><em>nge</em><em> </em><em>the</em><em> </em><em>1</em><em>.</em><em>5</em><em> </em><em>into</em><em> </em><em>a</em><em> </em><em>whol</em><em>e</em><em> </em><em>number</em><em> </em><em>form</em><em>.</em>
<em>thus</em>
<em>
</em>
<em>
</em>
<em>First</em><em> </em><em>law</em><em> </em><em>of</em><em> </em><em>indic</em><em>es</em><em> </em><em>appli</em><em>ed</em><em> </em><em>there</em>
<em>=</em><em>(</em><em>1</em><em>5</em><em>×</em><em>1</em><em>0</em><em>^</em><em>3</em><em>)</em><em>(</em><em>8</em><em>×</em><em>1</em><em>0</em><em>^</em><em>8</em><em>)</em>
<em>=</em><em>(</em><em>1</em><em>5</em><em>×</em><em>8</em><em>)</em><em>(</em><em>1</em><em>0</em><em>^</em><em>3</em><em>×</em><em>1</em><em>0</em><em>^</em><em>8</em><em>)</em>
<em>=</em><em>1</em><em>2</em><em>0</em><em>×</em><em>1</em><em>0</em><em>^</em><em>3</em><em>+</em><em>8</em><em> </em><em>(</em><em> </em><em>firs</em><em>t</em><em> </em><em>law</em><em> </em><em>of</em><em> </em><em>indic</em><em>es</em><em>,</em><em> </em><em>whi</em><em>ch</em><em> </em><em>sta</em><em>tes</em><em> </em><em>that</em><em> </em><em>,</em><em> </em><em>num</em><em>bers</em><em> </em><em>o</em><em>f</em><em> the</em><em> </em><em>sa</em><em>me</em><em> </em><em>base</em><em> </em><em>multi</em><em>plying</em><em> </em><em>each</em><em> </em><em>o</em><em>ther</em><em>,</em><em> take</em><em> </em><em>on</em><em>e</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>base</em><em> </em><em>and</em><em> </em><em>add</em><em> </em><em>the</em><em> </em><em>expon</em><em>ent</em><em>.</em><em> </em><em>and</em><em> </em><em>clearly</em><em> </em><em>both</em><em> </em><em>1</em><em>5</em><em> </em><em>and</em><em> </em><em>8</em><em> </em><em>are</em><em> </em><em>in</em><em> </em><em>base</em><em> </em><em>1</em><em>0</em>
<em>=</em><em>1</em><em>2</em><em>0</em><em>×</em><em>1</em><em>0</em><em>^</em><em>1</em><em>1</em>
<em>=</em><em>1</em><em>.</em><em>2</em><em>0</em><em>×</em><em>1</em><em>0</em><em>^</em><em>2</em><em> </em><em>×</em><em>1</em><em>0</em><em>^</em><em>1</em><em>1</em>
<em>=</em><em>1</em><em>.</em><em>2</em><em>0</em><em>×</em><em>1</em><em>0</em><em>^</em><em>1</em><em>1</em><em>+</em><em>2</em>
<em>=</em><em>1</em><em>.</em><em>2</em><em>0</em><em>×</em><em>1</em><em>0</em><em>^</em><em>1</em><em>3</em>
<em>so</em><em> </em><em>the</em><em> </em><em>a</em><em>nswer</em><em> </em><em>is</em><em> </em><em>alt</em><em> </em><em>B</em>